Stabilization of the Quantum Spin Hall Effect by Designed Removal of Time-Reversal Symmetry of Edge States

被引:44
|
作者
Li, Huichao [1 ,2 ]
Sheng, L. [1 ,2 ]
Shen, R. [1 ,2 ]
Shao, L. B. [1 ,2 ]
Wang, Baigeng [1 ,2 ]
Sheng, D. N. [3 ]
Xing, D. Y. [1 ,2 ,4 ]
机构
[1] Nanjing Univ, Dept Phys, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[3] Calif State Univ Northridge, Dept Phys & Astron, Northridge, CA 91330 USA
[4] Nanjing Univ, Natl Ctr Microstruct & Quantum Manipulat, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
SINGLE DIRAC CONE; TOPOLOGICAL-INSULATOR; REALIZATION;
D O I
10.1103/PhysRevLett.110.266802
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum spin Hall (QSH) effect is known to be unstable to perturbations violating time-reversal symmetry. We show that creating a narrow ferromagnetic region near the edge of a QSH sample can push one of the counterpropagating edge states to the inner boundary of the ferromagnetic region and leave the other at the outer boundary, without changing their spin polarizations and propagation directions. Since the two edge states are spatially separated into different "lanes," the QSH effect becomes robust against symmetry-breaking perturbations.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Spin texture of time-reversal symmetry invariant surface states on W(110)
    Kutnyakhov, D.
    Chernov, S.
    Medjanik, K.
    Wallauer, R.
    Tusche, C.
    Ellguth, M.
    Nepijko, S. A.
    Krivenkov, M.
    Braun, J.
    Borek, S.
    Minar, J.
    Ebert, H.
    Elmers, H. J.
    Schoenhense, G.
    SCIENTIFIC REPORTS, 2016, 6
  • [22] Spin texture of time-reversal symmetry invariant surface states on W(110)
    D. Kutnyakhov
    S. Chernov
    K. Medjanik
    R. Wallauer
    C. Tusche
    M. Ellguth
    S. A. Nepijko
    M. Krivenkov
    J. Braun
    S. Borek
    J. Minár
    H. Ebert
    H. J. Elmers
    G. Schönhense
    Scientific Reports, 6
  • [23] Time-reversal symmetry breaking and spontaneous anomalous Hall effect in Fermi fluids
    Sun, Kai
    Fradkin, Eduardo
    PHYSICAL REVIEW B, 2008, 78 (24):
  • [24] Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets
    Smejkal, Libor
    Gonzalez-Hernandez, Rafael
    Jungwirth, T.
    Sinova, J.
    SCIENCE ADVANCES, 2020, 6 (23)
  • [25] Time-reversal invariant topological moiré flat band: A platform for the fractional quantum spin Hall effect
    Wu, Yi-Ming
    Shaffer, Daniel
    Wu, Zhengzhi
    Santos, Luiz H.
    PHYSICAL REVIEW B, 2024, 109 (11)
  • [26] Edge currents in superconductors with a broken time-reversal symmetry
    Braunecker, B
    Lee, PA
    Wang, ZQ
    PHYSICAL REVIEW LETTERS, 2005, 95 (01)
  • [27] Superconducting proximity effect in quantum wires without time-reversal symmetry
    Skvortsov, M. A.
    Ostrovsky, P. M.
    Ivanov, D. A.
    Fominov, Ya. V.
    PHYSICAL REVIEW B, 2013, 87 (10)
  • [28] Quantum third-order nonlinear Hall effect of a four-terminal device with time-reversal symmetry
    Wei, Miaomiao
    Xiang, Longjun
    Wang, Luyang
    Xu, Fuming
    Wang, Jian
    PHYSICAL REVIEW B, 2022, 106 (03)
  • [29] Model of spin liquids with and without time-reversal symmetry
    Chen, Jyong-Hao
    Mudry, Christopher
    Chamon, Claudio
    Tsvelik, A. M.
    PHYSICAL REVIEW B, 2019, 99 (18)
  • [30] Phase space crystal vibrations: Chiral edge states with preserved time-reversal symmetry
    Guo, Lingzhen
    Peano, Vittorio
    Marquardt, Florian
    PHYSICAL REVIEW B, 2022, 105 (09)