Spectral Unmixing in Multiple-Kernel Hilbert Space for Hyperspectral Imagery

被引:24
|
作者
Gu, Yanfeng [1 ]
Wang, Shizhe [1 ]
Jia, Xiuping [2 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
[2] Univ New S Wales, Sch Engn & Informat Technol, Australian Def Force Acad, Canberra, ACT 2610, Australia
来源
关键词
Hyperspectral imagery; multiple-kernel learning (MKL); reproducing kernel Hilbert space (RKHS); spectral unmixing; support vector machines (SVMs); NONNEGATIVE MATRIX FACTORIZATION; ENDMEMBER EXTRACTION; MIXTURE-MODELS; CLASSIFICATION; FRAMEWORK; QUANTIFICATION; ALGORITHM;
D O I
10.1109/TGRS.2012.2227757
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this paper, we address a spectral unmixing problem for hyperspectral images by introducing multiple-kernel learning (MKL) coupled with support vector machines. To effectively solve issues of spectral unmixing, an MKL method is explored to build new boundaries and distances between classes in multiple-kernel Hilbert space (MKHS). Integrating reproducing kernel Hilbert spaces (RKHSs) spanned by a series of different basis kernels in MKHS is able to provide increased power in handling general nonlinear problems than traditional single-kernel learning in RKHS. The proposed method is developed to solve multiclass unmixing problems. To validate the proposed MKL-based algorithm, both synthetic data and real hyperspectral image data were used in our experiments. The experimental results demonstrate that the proposed algorithm has a strong ability to capture interclass spectral differences and improve unmixing accuracy, compared to the state-of-the-art algorithms tested.
引用
收藏
页码:3968 / 3981
页数:14
相关论文
共 50 条
  • [41] Airborne hyperspectral imagery and linear spectral unmixing for mapping variation in crop yield
    Chenghai Yang
    James H. Everitt
    Joe M. Bradford
    Precision Agriculture, 2007, 8 : 279 - 296
  • [42] Noise Reduction on Hyperspectral Imagery Using Spectral Unmixing and Class-Labels
    Kaya, Berk
    Ozkan, Savas
    Akar, Gozde Bozdagi
    2017 25TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2017,
  • [43] Spatial-Spectral Sparse Unmixing for Hyperspectral Imagery based on Graph Laplacian
    Gan Yuquan
    Li Lei
    Zhang Ji
    Liu Ying
    AOPC 2021: OPTICAL SPECTROSCOPY AND IMAGING, 2021, 12064
  • [44] GRAPH LAPLACIAN REGULARIZED SPECTRAL-SPATIAL-SPARSE UNMIXING FOR HYPERSPECTRAL IMAGERY
    Li, Zhi
    Feng, Ruyi
    Shi, Yichang
    Wang, Lizhe
    Zhong, Yanfei
    Zhang, Liangpei
    Zeng, Tieyong
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1608 - 1611
  • [45] Design and modelling of spectral-thermal unmixing targets for airborne hyperspectral imagery
    Defence Science and Technology Laboratory, Farnborough, Hampshire, GU14 0LX, United Kingdom
    SPIE, 1600, (2006):
  • [46] Supervised Nonlinear Spectral Unmixing Using a Postnonlinear Mixing Model for Hyperspectral Imagery
    Altmann, Yoann
    Halimi, Abderrahim
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (06) : 3017 - 3025
  • [47] CASCADED AUTOENCODERS FOR SPECTRAL-SPATIAL REMOTELY SENSED HYPERSPECTRAL IMAGERY UNMIXING
    Shan, Yueshuai
    Zhang, Shaoquan
    Hong, Shanqi
    Li, Fan
    Deng, Chengzhi
    Wang, Shengqian
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3271 - 3274
  • [48] Exploration of Unmixing and Classification of Hyperspectral Imagery
    Karchi, Rashmi P.
    Munusamy, Nagarajan
    INTERNATIONAL JOURNAL OF FUTURE GENERATION COMMUNICATION AND NETWORKING, 2018, 11 (06): : 13 - 31
  • [49] Robust Sparse Unmixing for Hyperspectral Imagery
    Wang, Dan
    Shi, Zhenwei
    Cui, Xinrui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (03): : 1348 - 1359
  • [50] ROBUST UNMIXING ALGORITHMS FOR HYPERSPECTRAL IMAGERY
    Halimi, Abderrahim
    Altmann, Yoann
    Buller, Gerald S.
    McLaughlin, Steve
    Oxford, William
    Clarke, Damien
    Piper, Jonathan
    2016 SENSOR SIGNAL PROCESSING FOR DEFENCE (SSPD), 2016, : 94 - 98