Adaptive Parent Population Sizing in Evolution Strategies

被引:7
|
作者
LaPorte, G. Jake [1 ]
Branke, Juergen [2 ]
Chen, Chun-Hung [3 ]
机构
[1] US Mil Acad, Dept Math Sci, West Point, NY 10996 USA
[2] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[3] George Mason Univ, Dept Syst Engn & Operat Res, Fairfax, VA 22030 USA
基金
美国国家科学基金会;
关键词
Evolution strategy; parental population size; adaptive population sizing; GENETIC ALGORITHMS; SIZE; LAMBDA)-THEORY; RECOMBINATION; CHOICE;
D O I
10.1162/EVCO_a_00136
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Adaptive population sizing aims at improving the overall progress of an evolution strategy. At each generation, it determines the parental population size that promises the largest fitness gain, based on the information collected during the evolutionary process. In this paper, we develop an adaptive variant of a ( mu/ mu lambda) evolution strategy. Based on considerations on the sphere, we derive two approaches for adaptive population sizing. We then test these approaches empirically on the sphere model using a normalized mutation strength and cumulative mutation strength adaption. Finally, we compare the methodology on more general functions with a fixed population, covariance matrix adaption evolution strategy ( CMA- ES). The results confirm that our adaptive population sizing methods yield better results than even the best fixed population size.
引用
收藏
页码:397 / 420
页数:24
相关论文
共 50 条
  • [31] Adaptive, population tuning scheme for differential evolution
    Zhu, Wu
    Tang, Yang
    Fang, Jian-an
    Zhang, Wenbing
    INFORMATION SCIENCES, 2013, 223 : 164 - 191
  • [32] POPULATION-GENETICS - ADAPTIVE EVOLUTION IN THE LABORATORY
    CHARLESWORTH, B
    NATURE, 1983, 302 (5908) : 479 - 480
  • [33] Self-Adaptive Differential Evolution Algorithm With Zoning Evolution of Control Parameters and Adaptive Mutation Strategies
    Fan, Qinqin
    Yan, Xuefeng
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 219 - 232
  • [34] Adaptive Differential Evolution: SHADE with Competing Crossover Strategies
    Bujok, Petr
    Tvrdik, Josef
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2015, 9119 : 329 - 339
  • [35] Continuous selection and self-adaptive evolution strategies
    Runarsson, TP
    Yao, X
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 279 - 284
  • [36] An adaptive motion estimation algorithm based on evolution strategies
    Hui, W
    Mao, ZG
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE AND MULTIDIMENSIONAL SIGNAL PROCESSING SPECIAL SESSIONS, 2004, : 353 - 356
  • [37] Online Adaptive Controller Based on Dynamic Evolution Strategies
    Fister, Dusan
    Safaric, Jakob
    Fister, Iztok, Jr.
    Safaric, Riko
    Fister, Iztok
    APPLIED SCIENCES-BASEL, 2018, 8 (11):
  • [38] Enhanced Differential Evolution With Adaptive Strategies for Numerical Optimization
    Gong, Wenyin
    Cai, Zhihua
    Ling, Charles X.
    Li, Hui
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (02): : 397 - 413
  • [39] Gender differences in adaptive strategies of the population of the Republic of Tuva
    Natsak, Organa D.
    Balakina, Galina F.
    NOVYE ISSLEDOVANIYA TUVY-NEW RESEARCH OF TUVA, 2024, (02): : 177 - 192
  • [40] Adaptive and Non-Adaptive Strategies for Optimal Energy Management and Sizing of a Dual Storage System in a Hybrid Electric Bus
    Isaac Herrera, Victor
    Milo, Aitor
    Gaztanaga, Haizea
    Ramos, Javier
    Camblong, Haritza
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (09) : 3435 - 3447