A GENERAL EXISTENCE THEOREM FOR DIFFERENTIAL INCLUSIONS IN THE VECTOR VALUED CASE

被引:0
|
作者
Dacorogna, B. [1 ]
Pisante, G. [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Sect Math, CH-1015 Lausanne, Switzerland
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the existence of solutions, u is an element of phi + W-0(1,infinity) ( Omega; R-m), for differential inclusions of the form Du(x) is an element of E, a.e. in Omega .
引用
收藏
页码:421 / 436
页数:16
相关论文
共 50 条
  • [1] A general multi-valued hybrid fixed point theorem and perturbed differential inclusions
    Dhage, BC
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (12) : 2747 - 2772
  • [2] An existence theorem for solving the set-valued variational inclusions
    Liu, LW
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2004, 35 (02): : 243 - 248
  • [3] AN EXISTENCE THEOREM FOR BOUNDED VECTOR-VALUED FUNCTIONS
    ZAIDMAN, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (07): : 1061 - &
  • [4] A General Vector-Valued Beurling Theorem
    Chen, Yanni
    Hadwin, Don
    Zhang, Ye
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2016, 86 (03) : 321 - 332
  • [5] A General Vector-Valued Beurling Theorem
    Yanni Chen
    Don Hadwin
    Ye Zhang
    Integral Equations and Operator Theory, 2016, 86 : 321 - 332
  • [6] A general existence theorem for a multi-valued control
    Emamizadeh, Behrouz
    Liu, Yichen
    Zivari-Rezapour, Mohsen
    COMPTES RENDUS MATHEMATIQUE, 2024, 362 : 195 - 202
  • [7] An existence theorem for second order functional differential inclusions
    Benchohra, M
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2002, 9 (04): : 599 - 606
  • [8] Theorem on the existence of weak solutions to stochastic differential inclusions
    Levakov, A. A.
    Vas'kovskii, M. M.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2006, (03): : 81 - 82
  • [9] AN EXISTENCE THEOREM FOR NONLINEAR RANDOM DIFFERENTIAL-INCLUSIONS
    KRAVVARITIS, D
    STAVRAKAKIS, N
    DIFFERENTIAL EQUATIONS //: PROCEEDINGS OF THE EQUADIFF CONFERENCE, 1989, 118 : 373 - 378
  • [10] Existence and approximation for a general class of differential inclusions
    Dinca, G
    Jebelean, P
    Motreanu, D
    HOUSTON JOURNAL OF MATHEMATICS, 2002, 28 (01): : 193 - 215