A General Vector-Valued Beurling Theorem

被引:2
|
作者
Chen, Yanni [1 ]
Hadwin, Don [2 ]
Zhang, Ye [1 ]
机构
[1] Shaanxi Normal Univ, Sch Math & Informat Sci, Xian 710119, Peoples R China
[2] Univ New Hampshire, Dept Math, Durham, NH 03824 USA
基金
中国国家自然科学基金;
关键词
Hardy space; Rotationally symmetric norm; Beurling's theorem; Invariant subspace; Measurable cross-section;
D O I
10.1007/s00020-016-2330-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Suppose is a rotationally symmetric norm on and is a "nice" norm on where is a -finite measure on . We prove a version of Beurling's invariant subspace theorem for the space Our proof uses the version of Beurling's theorem on in Chen (Adv Appl Math, 2016) and measurable cross-section techniques. Our result significantly extends a result of Rezaei, Talebzadeh, and Shin (Int J Math Anal 6:701-707, 2012).
引用
收藏
页码:321 / 332
页数:12
相关论文
共 50 条
  • [1] A General Vector-Valued Beurling Theorem
    Yanni Chen
    Don Hadwin
    Ye Zhang
    Integral Equations and Operator Theory, 2016, 86 : 321 - 332
  • [2] A CHOQUET THEOREM FOR GENERAL SUBSPACES OF VECTOR-VALUED FUNCTIONS
    SAAB, P
    TALAGRAND, M
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1985, 98 (SEP) : 323 - 326
  • [3] AN APPROXIMATION THEOREM FOR VECTOR-VALUED FUNCTIONS
    STERNFELD, Y
    WEIT, Y
    LECTURE NOTES IN MATHEMATICS, 1989, 1376 : 126 - 137
  • [5] On a theorem of Strassen for vector-valued measures
    Guerra, PJ
    Muñoz-Bouzo, MJ
    QUARTERLY JOURNAL OF MATHEMATICS, 2002, 53 : 285 - 293
  • [6] RADOS THEOREM FOR VECTOR-VALUED FUNCTIONS
    CASADIO TARABUSI, E
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4B (01): : 279 - 289
  • [7] FUBINI THEOREM FOR VECTOR-VALUED MEASURES
    UGLANOV, AV
    MATHEMATICS OF THE USSR-SBORNIK, 1991, 69 (02): : 453 - 463
  • [8] The vector-valued nonhomogeneous Tb Theorem
    Hytonen, Tuomas P.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (02) : 451 - 511
  • [9] A vector-valued Hp corona theorem on the polydisk
    Trent, Tavan T.
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (01) : 129 - 149
  • [10] Vector-valued general Dirichlet series
    Carando, Daniel
    Defant, Andreas
    Marceca, Felipe
    Schoolmann, Ingo
    STUDIA MATHEMATICA, 2021, 258 (03) : 269 - 316