Stochastic evolutions driven by nonlinear quantum noise. II

被引:0
|
作者
Accardi, L [1 ]
Boukas, A [1 ]
机构
[1] Univ Rome, Ctr Matemat Vito Volterra, I-00133 Rome, Italy
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the renormalized Ito table for higher powers of white noise and, assuming that there exists a Hilbert space in which these powers have an operator realization, we prove existence, uniqueness, and unitarity for stochastic equations driven by these powers.
引用
收藏
页码:401 / 413
页数:13
相关论文
共 50 条
  • [21] Stabilization of stochastic nonlinear systems driven by noise of unknown covariance
    Deng, H
    Krstic, M
    Williams, RJ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (08) : 1237 - 1253
  • [22] THE CLASSICAL LIMIT OF REDUCED QUANTUM STOCHASTIC EVOLUTIONS
    HUDSON, R
    LINDSAY, M
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1985, 43 (02): : 133 - 145
  • [23] Stochastic synchronization in nonlinear network systems driven by intrinsic and coupling noise
    Aminzare, Zahra
    Srivastava, Vaibhav
    BIOLOGICAL CYBERNETICS, 2022, 116 (02) : 147 - 162
  • [24] On a nonlinear stochastic pseudo-differential equation driven by fractional noise
    Liu, Junfeng
    Yan, Litan
    STOCHASTICS AND DYNAMICS, 2018, 18 (01)
  • [25] Asymptotic behavior of stochastic Schrodinger lattice systems driven by nonlinear noise
    Wang, Bixiang
    Wang, Renhai
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (02) : 213 - 237
  • [26] Quantum noise properties of multiphoton transitions in driven nonlinear resonators
    Leyton, V.
    Peano, V.
    Thorwart, M.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [27] A STOCHASTIC PARABOLIC EQUATION WITH NONLINEAR FLUX ON THE BOUNDARY DRIVEN BY A GAUSSIAN NOISE
    Barbu, Viorel
    Bonaccorsi, Stefano
    Tubaro, Luciano
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) : 780 - 802
  • [28] Stochastic synchronization in nonlinear network systems driven by intrinsic and coupling noise
    Zahra Aminzare
    Vaibhav Srivastava
    Biological Cybernetics, 2022, 116 : 147 - 162
  • [29] Dynamics of stochastic Ginzburg-Landau equations driven by nonlinear noise
    Shu, Ji
    Zhang, Lu
    Huang, Xin
    Zhang, Jian
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2022, 37 (03): : 382 - 402
  • [30] The stochastic nonlinear Schr?dinger equations driven by pure jump noise
    Wang, Jian
    Zhai, Jianliang
    Zhu, Jiahui
    STATISTICS & PROBABILITY LETTERS, 2023, 197