Analytic and Stochastic Methods of Structure Parameter Estimation

被引:2
|
作者
Kuznetsov, Mikhail [1 ]
Tokmakova, Aleksandra [1 ]
Strijov, Vadim [1 ]
机构
[1] Moscow Inst Phys & Technol, Inst Lane 9, Dolgoprudnyi 141700, Moscow Region, Russia
关键词
structure parameters optimization; regression model; error function; Laplace approximation; Monte-Carlo estimation; cross-validation; COVARIANCE-MATRIX; REGULARIZATION; REGRESSION; INFERENCE; SELECTION;
D O I
10.15388/Informatica.2016.102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper presents analytic and stochastic methods of structure parameters estimation for a model selection problem. Structure parameters are covariance matrices of parameters of linear and non-linear regression models. To optimize model parameters and structure parameters we maximize a model evidence, a convolution of a data likelihood with a prior distribution of model parameters. The analytic methods are based on the derivatives computation of the approximated model evidence. The stochastic methods are based on the model parameters sampling and data cross-validation. The proposed methods are tested and compared on the synthetic and real data.
引用
收藏
页码:607 / 624
页数:18
相关论文
共 50 条