Satellite Pose Estimation with Deep Landmark Regression and Nonlinear Pose Refinement

被引:79
|
作者
Chen, Bo [1 ]
Cao, Jiewei [1 ]
Parra, Alvaro [1 ]
Chin, Tat-Jun [1 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Adelaide, SA 5005, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/ICCVW.2019.00343
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an approach to estimate the 6DOF pose of a satellite, relative to a canonical pose, from a single image. Such a problem is crucial in many space proximity operations, such as docking, debris removal, and inter-spacecraft communications. Our approach combines machine learning and geometric optimisation, by predicting the coordinates of a set of landmarks in the input image, associating the landmarks to their corresponding 3D points on an a priori reconstructed 3D model, then solving for the object pose using non-linear optimisation. Our approach is not only novel for this specific pose estimation task, which helps to further open up a relatively new domain for machine learning and computer vision, but it also demonstrates superior accuracy and won the first place in the recent Kelvins Pose Estimation Challenge organised by the European Space Agency (ESA).
引用
收藏
页码:2816 / 2824
页数:9
相关论文
共 50 条
  • [31] DPDM: FEATURE-BASED POSE REFINEMENT WITH DEEP POSE AND DEEP MATCH FOR MONOCULAR VISUAL ODOMETRY
    Huang, Li-Yang
    Huang, Shao-Syuan
    Chien, Shao-Yi
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1370 - 1374
  • [32] A Pose Proposal and Refinement Network for Better 6D Object Pose Estimation
    Trabelsi, Ameni
    Chaabane, Mohamed
    Blanchard, Nathaniel
    Beveridge, Ross
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2381 - 2390
  • [33] A Shared Pose Regression Network for Pose Estimation of Objects from RGB Images
    Bengtson, Stefan Hein
    Astrom, Hampus
    Moeslund, Thomas B.
    Topp, Elin A.
    Krueger, Volker
    2022 16TH INTERNATIONAL CONFERENCE ON SIGNAL-IMAGE TECHNOLOGY & INTERNET-BASED SYSTEMS, SITIS, 2022, : 91 - 97
  • [34] A deep structure for human pose estimation
    Zhao, Lin
    Gao, Xinbo
    Tao, Dacheng
    Li, Xuelong
    SIGNAL PROCESSING, 2015, 108 : 36 - 45
  • [35] Aneurysm Pose Estimation with Deep Learning
    Assis, Youssef
    Liao, Liang
    Pierre, Fabien
    Anxionnat, Rene
    Kerrien, Erwan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT II, 2023, 14221 : 543 - 553
  • [36] Deep probabilistic human pose estimation
    Petrov, Ilia
    Shakhuro, Vlad
    Konushin, Anton
    IET COMPUTER VISION, 2018, 12 (05) : 578 - 585
  • [37] Two-stage visual localisation: Landmark-based pose initialisation and model-based pose refinement
    Chen, ZZ
    Pe, P
    McDermid, J
    Pears, N
    2005 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2005, : 3763 - 3769
  • [38] FilterformerPose: Satellite Pose Estimation Using Filterformer
    Ye, Ruida
    Wang, Lifen
    Ren, Yuan
    Wang, Yujing
    Chen, Xiaocen
    Liu, Yufei
    SENSORS, 2023, 23 (20)
  • [39] Revisiting Monocular Satellite Pose Estimation With Transformer
    Wang, Zi
    Zhang, Zhuo
    Sun, Xiaoliang
    Li, Zhang
    Yu, Qifeng
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (05) : 4279 - 4294
  • [40] Pose estimation and tracking using multivariate regression
    Thayananthan, Arasanathan
    Navaratnam, Ramanan
    Stenger, Bjoern
    Torr, Philip H. S.
    Cipolla, Roberto
    PATTERN RECOGNITION LETTERS, 2008, 29 (09) : 1302 - 1310