Switch detection and robust parameter estimation for slowly switched Hammerstein systems

被引:8
|
作者
Wang, Zhu [1 ]
An, Haoran [1 ]
Luo, Xionglin [1 ]
机构
[1] China Univ Petr, Dept Automat, Beijing 102249, Peoples R China
基金
中国国家自然科学基金;
关键词
Hammerstein system; Slowly switched system; Impulsive noise; Switch detection; Robust estimation; LEAST-SQUARES IDENTIFICATION; MARKOVIAN JUMP SYSTEMS; RECURSIVE-IDENTIFICATION; NONLINEAR-SYSTEMS; ALGORITHM;
D O I
10.1016/j.nahs.2018.12.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Switch detection and robust identification for slowly switched Hammerstein systems are considered in this paper. The switching law is slow, arbitrary and cannot be observed online. A two-identifier-based switch detection scheme is proposed, in order to achieve fast adaptability and robustness of parameter estimation. Specifically, at first, a recursive identification method based on long-horizon iteration is exploited under impulsive noise, and its convergence for time-invariant systems is verified. Secondly, to follow the changes of real processes, a forgetting factor is introduced, and two recursive identifiers with different horizon lengths are developed. Identifier (I) with the long horizon length can resist the influence of outliers, and Identifier (II) is responsible for process rapid reactions. Then, the estimated difference between two identifiers is analyzed to distinguish possible switching points from impulsive noise. Consequently, the two-identifier-based switch detection scheme is formed. Finally, a simulation example demonstrates the effectiveness of the proposed scheme. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:202 / 213
页数:12
相关论文
共 50 条
  • [31] Fault detection via parameter robust estimation
    Chung, WH
    Speyer, JL
    PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 3976 - 3981
  • [32] Robust state estimation for switched systems with unstable subsystems
    Wang, Yue-E
    Wu, Di
    Wu, Caiyun
    Wang, Xiaoying
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 1798 - 1803
  • [33] Robust estimation of linear switched systems with dwell time
    Allerhand, L. I.
    Shaked, U.
    INTERNATIONAL JOURNAL OF CONTROL, 2013, 86 (11) : 2067 - 2074
  • [34] Design of sign fractional optimization paradigms for parameter estimation of nonlinear Hammerstein systems
    Chaudhary, Naveed Ishtiaq
    Aslam, Muhammad Saeed
    Baleanu, Dumitru
    Raja, Muhammad Asif Zahoor
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (12): : 8381 - 8399
  • [35] Parameter Estimation of Parallel Wiener-Hammerstein Systems by Decoupling their Volterra Representations
    Dreesen, Philippe
    Ishteva, Mariya
    IFAC PAPERSONLINE, 2021, 54 (07): : 457 - 462
  • [36] Highly efficient parameter estimation algorithms for Hammerstein non-linear systems
    Mao, Yawen
    Ding, Feng
    Xu, Ling
    Hayat, Tasawar
    IET CONTROL THEORY AND APPLICATIONS, 2019, 13 (04): : 477 - 485
  • [37] Robust fault detection and adaptive parameter identification for DC-DC converters via switched systems
    Li, Jian
    Pan, Kunpeng
    Su, Qingyu
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2020, 34 (11) : 1642 - 1657
  • [38] Design of sign fractional optimization paradigms for parameter estimation of nonlinear Hammerstein systems
    Naveed Ishtiaq Chaudhary
    Muhammad Saeed Aslam
    Dumitru Baleanu
    Muhammad Asif Zahoor Raja
    Neural Computing and Applications, 2020, 32 : 8381 - 8399
  • [39] Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models
    Wang, Dongqing
    APPLIED MATHEMATICS LETTERS, 2016, 57 : 13 - 19
  • [40] Parameter estimation of Wiener-Hammerstein models
    Emara-Shabaik, HE
    Ahmed, MS
    Al-Ajmi, KH
    JSME INTERNATIONAL JOURNAL SERIES C-MECHANICAL SYSTEMS MACHINE ELEMENTS AND MANUFACTURING, 2001, 44 (01): : 118 - 124