The condensate from torus knots

被引:6
|
作者
Gorsky, A. [2 ,3 ]
Milekhin, A. [1 ,2 ,3 ,4 ]
Sopenko, N. [1 ,2 ]
机构
[1] Inst Theoret & Expt Phys, Moscow 117218, Russia
[2] Moscow Inst Phys & Techol, Dolgoprudnyi 141700, Russia
[3] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow 127051, Russia
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
来源
关键词
Supersymmetric gauge theory; Wilson; 't Hooft and Polyakov loops; Solitons Monopoles and Instantons; Field Theories in Higher Dimensions; SUSY FIELD-THEORIES; TRANSITIONS; INVARIANTS; HOMOLOGY; DUALITY; SPACES;
D O I
10.1007/JHEP09(2015)102
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss recently formulated instanton-torus knot duality in Omega-deformed 5D SQED on R-4 x S-1 focusing at the microscopic aspects of the condensate formation in the instanton ensemble. Using the chain of dualities and geometric transitions we embed the SQED with a surface defect into the SU(2) SQCD with N-f = 4 and identify the numbers (n, m) of the torus T-n,T- m knot as instanton charge and electric charge. The HOMFLY torus knot invariants in the fundamental representation provide entropic factor in the condensate of the massless flavor counting the degeneracy of the instanton-W-boson web with instanton and electric numbers (n, m) but different spin and flavor content. Using the inverse geometrical transition we explain how our approach is related to the evaluation of the HOMFLY invariants in terms of Wilson loop in 3d CS theory. The reduction to 4D theory is briefly considered and some analogy with baryon vertex is conjectured.
引用
收藏
页数:41
相关论文
共 50 条
  • [41] Torus Knots and Mirror Symmetry
    Andrea Brini
    Marcos Mariño
    Bertrand Eynard
    Annales Henri Poincaré, 2012, 13 : 1873 - 1910
  • [42] The skein module of torus knots
    Marche, Julien
    QUANTUM TOPOLOGY, 2010, 1 (04) : 413 - 421
  • [43] Unknotting sequences for torus knots
    Baader, Sebastian
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 148 : 111 - 116
  • [44] Torus Knots and Mirror Symmetry
    Brini, Andrea
    Eynard, Bertrand
    Marino, Marcos
    ANNALES HENRI POINCARE, 2012, 13 (08): : 1873 - 1910
  • [45] On Composite Twisted Torus Knots
    Morimoto, Kanji
    TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (02) : 499 - 503
  • [46] Knotoids and knots in the thickened torus
    Korablev, Ph. G.
    May, Ya. K.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (05) : 837 - 844
  • [47] On the Chirality of Torus Curves and Knots
    Georges H. Wagnière
    Journal of Mathematical Chemistry, 2007, 41 : 27 - 31
  • [48] Knotoids and knots in the thickened torus
    Ph. G. Korablev
    Ya. K. May
    Siberian Mathematical Journal, 2017, 58 : 837 - 844
  • [49] Gordian adjacency for torus knots
    Feller, Peter
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (02): : 769 - 793
  • [50] An unknotting sequence for torus knots
    Siwach, V.
    Madeti, P.
    TOPOLOGY AND ITS APPLICATIONS, 2015, 196 : 668 - 674