Estimation of convolution in the model with noise

被引:0
|
作者
Chesneau, C. [1 ]
Comte, F. [2 ]
Mabon, G. [2 ,3 ]
Navarro, F. [4 ]
机构
[1] Univ Caen Basse Normandie, Dept Math, LMNO, UFR Sci, Caen, France
[2] Univ Paris 05, UMR CNRS 8145, MAP5, Sorbonne Paris Cite, Paris, France
[3] CREST, Malakoff, France
[4] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
关键词
adaptive estimation; convolution of densities; measurement errors; oracle inequality; non-parametric estimator; CONSISTENT DENSITY ESTIMATORS; NONPARAMETRIC-ESTIMATION; WAVELET ESTIMATOR; LEVY PROCESSES; DECONVOLUTION; CONVERGENCE; RATES;
D O I
10.1080/10485252.2015.1041944
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the estimation of the l-fold convolution of the density of an unobserved variable X from n i.i.d. observations of the convolution model Y = X + epsilon. We first assume that the density of the noise e is known and define non-adaptive estimators, for which we provide bounds for the mean integrated squared error. In particular, under some smoothness assumptions on the densities of X and e, we prove that the parametric rate of convergence 1/n can be attained. Then, we construct an adaptive estimator using a penalisation approach having similar performances to the non-adaptive one. The price for its adaptivity is a logarithmic term. The results are extended to the case of unknown noise density, under the condition that an independent noise sample is available. Lastly, we report a simulation study to support our theoretical findings.
引用
收藏
页码:286 / 315
页数:30
相关论文
共 50 条
  • [41] Estimation of the signal-to-noise in the linear regression model
    Wencheko, E
    STATISTICAL PAPERS, 2000, 41 (03) : 327 - 343
  • [42] SLAM estimation method for uncertain model noise parameters
    Gao, Junchai
    Yan, Keding
    Han, Bing
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 4): : S9425 - S9434
  • [43] Bias and noise in proportion estimation: A mixture psychophysical model
    Gouet, Camilo
    Jin, Wei
    Naiman, Daniel Q.
    Pena, Marcela
    Halberda, Justin
    COGNITION, 2021, 213
  • [44] Nonparametric estimation in a multiplicative censoring model with symmetric noise
    Comte, F.
    Dion, C.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2016, 28 (04) : 768 - 801
  • [45] Doppler centroid estimation of spaceborne SAR with noise model
    Yang, Canmei
    Qian, Guohui
    Lin, Tao
    Wang, Lei
    Yuhang Xuebao/Journal of Astronautics, 19 (04): : 15 - 20
  • [46] SLAM estimation method for uncertain model noise parameters
    Junchai Gao
    Keding Yan
    Bing Han
    Cluster Computing, 2019, 22 : 9425 - 9434
  • [47] Minimum Variance Estimation for the Sparse Signal in Noise Model
    Schmutzhard, Sebastian
    Jung, Alexander
    Hlawatsch, Franz
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 124 - 128
  • [48] A New Framework to Automatically Select Noise Model for Rician Noise Estimation in MR Images
    Varghees, Nivitha V.
    Manikandan, M. Sabarimalai
    Gini, Rolant
    Soman, K. P.
    2012 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND COMMUNICATIONS (ICACC), 2012, : 82 - 85
  • [49] Image signal-to-noise ratio and noise variance estimation using autoregressive model
    Kamel, NS
    Sim, KS
    SCANNING, 2004, 26 (06) : 277 - 281
  • [50] Group Contribution-Based Graph Convolution Network: Pure Property Estimation Model
    Sun Yoo Hwang
    Jeong Won Kang
    International Journal of Thermophysics, 2022, 43