Estimation of convolution in the model with noise

被引:0
|
作者
Chesneau, C. [1 ]
Comte, F. [2 ]
Mabon, G. [2 ,3 ]
Navarro, F. [4 ]
机构
[1] Univ Caen Basse Normandie, Dept Math, LMNO, UFR Sci, Caen, France
[2] Univ Paris 05, UMR CNRS 8145, MAP5, Sorbonne Paris Cite, Paris, France
[3] CREST, Malakoff, France
[4] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
关键词
adaptive estimation; convolution of densities; measurement errors; oracle inequality; non-parametric estimator; CONSISTENT DENSITY ESTIMATORS; NONPARAMETRIC-ESTIMATION; WAVELET ESTIMATOR; LEVY PROCESSES; DECONVOLUTION; CONVERGENCE; RATES;
D O I
10.1080/10485252.2015.1041944
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We investigate the estimation of the l-fold convolution of the density of an unobserved variable X from n i.i.d. observations of the convolution model Y = X + epsilon. We first assume that the density of the noise e is known and define non-adaptive estimators, for which we provide bounds for the mean integrated squared error. In particular, under some smoothness assumptions on the densities of X and e, we prove that the parametric rate of convergence 1/n can be attained. Then, we construct an adaptive estimator using a penalisation approach having similar performances to the non-adaptive one. The price for its adaptivity is a logarithmic term. The results are extended to the case of unknown noise density, under the condition that an independent noise sample is available. Lastly, we report a simulation study to support our theoretical findings.
引用
收藏
页码:286 / 315
页数:30
相关论文
共 50 条
  • [1] Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model
    Butucea, C
    Matias, C
    BERNOULLI, 2005, 11 (02) : 309 - 340
  • [2] Hermite regression estimation in noisy convolution model
    Sacko, Ousmane
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2024, 233
  • [3] Adaptive estimation of linear functionals in the convolution model and applications
    Butucea, C.
    Comte, F.
    BERNOULLI, 2009, 15 (01) : 69 - 98
  • [4] ORACLE INEQUALITIES AND ADAPTIVE ESTIMATION IN THE CONVOLUTION STRUCTURE DENSITY MODEL
    Lepski, O., V
    Willer, T.
    ANNALS OF STATISTICS, 2019, 47 (01): : 233 - 287
  • [5] Wavelet-Based Density Estimation in a Heteroscedastic Convolution Model
    Chesneau, Christophe
    Fadili, Jalal
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (17) : 3085 - 3099
  • [6] A recursive algorithm and its convergence for parameter estimation of convolution model
    Bijin, Hu
    Dacheng, Wang
    Ming, Lei
    ACTA MATHEMATICA SCIENTIA, 2008, 28 (01) : 93 - 100
  • [7] A RECURSIVE ALGORITHM AND ITS CONVERGENCE FOR PARAMETER ESTIMATION OF CONVOLUTION MODEL
    胡必锦
    汪达成
    雷鸣
    Acta Mathematica Scientia, 2008, (01) : 93 - 100
  • [8] The influence of noise exposure on the parameters of a convolution model of the compound action potential
    Chertoff, M. E.
    Lichtenhan, J. T.
    Tourtillott, B. M.
    Esau, K. S.
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2008, 124 (04): : 2174 - 2185
  • [9] ADAPTIVE TUNING NOISE ESTIMATION FOR MEDICAL IMAGES USING MAXIMUM ELEMENT CONVOLUTION LAPLACIAN
    Ting, Fung Fung
    Sim, Kok Swee
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2020, 16 (01): : 1 - 14
  • [10] A fast noise level estimation algorithm based on adaptive image segmentation and Laplacian convolution
    Turajlic, Emir
    2017 40TH INTERNATIONAL CONVENTION ON INFORMATION AND COMMUNICATION TECHNOLOGY, ELECTRONICS AND MICROELECTRONICS (MIPRO), 2017, : 486 - 491