Fictitious domain finite element method for Stokes/elliptic interface problems with jump coefficients

被引:19
|
作者
Sun, Pengtao [1 ]
机构
[1] Univ Nevada Las Vegas, Dept Math Sci, 4505 Maryland Pkwy, Las Vegas, NV 89154 USA
基金
美国国家科学基金会;
关键词
Stokes/elliptic interface problem; Distributed Lagrange multiplier; Fictitious domain method; Mixed finite element; Well-posedness; Optimal error estimate; LAGRANGE MULTIPLIER/FICTITIOUS DOMAIN; DISCONTINUOUS COEFFICIENTS; NUMERICAL-SIMULATION; ELLIPTIC-EQUATIONS; FLUID; FLOW; FORMULATION; APPROXIMATIONS; MULTIPLIER;
D O I
10.1016/j.cam.2019.01.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the distributed Lagrange multiplier/fictitious domain (DLM/FD) finite element method is studied for a generic Stokes/elliptic interface problem with jump coefficients which belongs to a type of linearized stationary fluid-structure interaction problem. A mixed finite element discretization is developed for the proposed DLM/FD method for Stokes/elliptic interface problem and analyzed on the aspects of well-posedness, stability and optimal convergence. Numerical experiments are carried out and the theoretical error estimates of DLM/FD finite element method are validated. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:81 / 97
页数:17
相关论文
共 50 条
  • [31] A mixed multiscale finite element method for elliptic problems with oscillating coefficients
    Chen, ZM
    Hou, TY
    MATHEMATICS OF COMPUTATION, 2003, 72 (242) : 541 - 576
  • [32] A Partially Penalised Immersed Finite Element Method for Elliptic Interface Problems with Non-Homogeneous Jump Conditions
    Ji, Haifeng
    Zhang, Qian
    Wang, Qiuliang
    Xie, Yifan
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (01) : 1 - 23
  • [33] An interface penalty finite element method for elliptic interface problems on piecewise meshes
    He, Xiaoxiao
    Deng, Weibing
    Wu, Haijun
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 367
  • [34] The adaptive immersed interface finite element method for elliptic and Maxwell interface problems
    Chen, Zhiming
    Xiao, Yuanming
    Zhang, Linbo
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (14) : 5000 - 5019
  • [35] Immersed-interface finite-element methods for elliptic interface problems with nonhomogeneous jump conditions
    Gong, Yan
    Li, Bo
    Li, Zhilin
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (01) : 472 - 495
  • [36] An Immersed Finite Element Method for Elliptic Interface Problems with Multi-Domain and Triple Junction Points
    Chen, Yuan
    Hou, Songming
    Zhang, Xu
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2019, 11 (05) : 1005 - 1021
  • [37] A Posteriori Error Estimator for Elliptic Interface Problems in a Fictitious Domain Formulation
    Najwa Alshehri
    Daniele Boffi
    Lucia Gastaldi
    Journal of Scientific Computing, 2025, 103 (2)
  • [38] Fictitious domain/finite element method for particulate flows
    Diaz-Goano, C
    Minev, PD
    Nandakumar, K
    JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 192 (01) : 105 - 123
  • [39] Locally Conservative Immersed Finite Element Method for Elliptic Interface Problems
    Gwanghyun Jo
    Do Y. Kwak
    Young-Ju Lee
    Journal of Scientific Computing, 2021, 87
  • [40] A second order isoparametric finite element method for elliptic interface problems
    Fang Xu-fa
    Han Dan-fu
    Hu Xian-liang
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (01) : 57 - 74