Improving Image Super-Resolution Based on Multiscale Generative Adversarial Networks

被引:2
|
作者
Yuan, Cao [1 ]
Deng, Kaidi [1 ]
Li, Chen [1 ]
Zhang, Xueting [1 ]
Li, Yaqin [1 ]
机构
[1] Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430024, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; generative adversarial network; deep generative model; super-resolution; feature transform; multiscale feature extraction;
D O I
10.3390/e24081030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Convolutional neural networks have greatly improved the performance of image superresolution. However, perceptual networks have problems such as blurred line structures and a lack of high-frequency information when reconstructing image textures. To mitigate these issues, a generative adversarial network based on multiscale asynchronous learning is proposed in this paper, whereby a pyramid structure is employed in the network model to integrate high-frequency information at different scales. Our scheme employs a U-net as a discriminator to focus on the consistency of adjacent pixels in the input image and uses the LPIPS loss for perceptual extreme super-resolution with stronger supervision. Experiments on benchmark datasets and independent datasets Set5, Set14, BSD100, and SunHays80 show that our approach is effective in restoring detailed texture information from low-resolution images.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [41] Multiscale generative adversarial network for real-world super-resolution
    Sun, Ying
    Yang, Zhiwen
    Tao, Bo
    Jiang, Guozhang
    Hao, Zhiqiang
    Chen, Baojia
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (21):
  • [42] Super-Resolution Reconstruction of Underwater Image Based on Image Sequence Generative Adversarial Network
    Li, Li
    Fan, Zijia
    Zhao, Mingyang
    Wang, Xinlei
    Wang, Zhongyang
    Wang, Zhiqiong
    Guo, Longxiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [43] Optimization of generative adversarial network based image super-resolution by using image mask
    Jiang, Qilei
    Ma, Yuanxi
    He Jishu/Nuclear Techniques, 2023, 46 (05): : 93 - 101
  • [44] Single Image Super-Resolution: Depthwise Separable Convolution Super-Resolution Generative Adversarial Network
    Jiang, Zetao
    Huang, Yongsong
    Hu, Lirui
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [45] Improved generative adversarial network for retinal image super-resolution
    Qiu, Defu
    Cheng, Yuhu
    Wang, Xuesong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2022, 225
  • [46] A lightweight generative adversarial network for single image super-resolution
    Lu, Xinbiao
    Xie, Xupeng
    Ye, Chunlin
    Xing, Hao
    Liu, Zecheng
    Cai, Changchun
    VISUAL COMPUTER, 2024, 40 (01): : 41 - 52
  • [47] Spatial Transformer Generative Adversarial Network for Image Super-Resolution
    Rempakos, Pantelis
    Vrigkas, Michalis
    Plissiti, Marina E.
    Nikou, Christophoros
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 : 399 - 411
  • [48] Image super-resolution using conditional generative adversarial network
    Qiao, Jiaojiao
    Song, Huihui
    Zhang, Kaihua
    Zhang, Xiaolu
    Liu, Qingshan
    IET IMAGE PROCESSING, 2019, 13 (14) : 2673 - 2679
  • [49] MULTIRESOLUTION MIXTURE GENERATIVE ADVERSARIAL NETWORK FOR IMAGE SUPER-RESOLUTION
    Wang, Yudiao
    Lan, Xuguang
    Zhang, Yinshu
    Miao, Ruixue
    Tian, Zhiqiang
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [50] Multiple Cycle-in-Cycle Generative Adversarial Networks for Unsupervised Image Super-Resolution
    Zhang, Yongbing
    Liu, Siyuan
    Dong, Chao
    Zhang, Xinfeng
    Yuan, Yuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1101 - 1112