Improving Image Super-Resolution Based on Multiscale Generative Adversarial Networks

被引:2
|
作者
Yuan, Cao [1 ]
Deng, Kaidi [1 ]
Li, Chen [1 ]
Zhang, Xueting [1 ]
Li, Yaqin [1 ]
机构
[1] Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430024, Peoples R China
基金
中国国家自然科学基金;
关键词
deep learning; generative adversarial network; deep generative model; super-resolution; feature transform; multiscale feature extraction;
D O I
10.3390/e24081030
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Convolutional neural networks have greatly improved the performance of image superresolution. However, perceptual networks have problems such as blurred line structures and a lack of high-frequency information when reconstructing image textures. To mitigate these issues, a generative adversarial network based on multiscale asynchronous learning is proposed in this paper, whereby a pyramid structure is employed in the network model to integrate high-frequency information at different scales. Our scheme employs a U-net as a discriminator to focus on the consistency of adjacent pixels in the input image and uses the LPIPS loss for perceptual extreme super-resolution with stronger supervision. Experiments on benchmark datasets and independent datasets Set5, Set14, BSD100, and SunHays80 show that our approach is effective in restoring detailed texture information from low-resolution images.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [1] A comparison of Generative Adversarial Networks for image super-resolution
    Cobelli, Patricia
    Nesmachnow, Sergio
    Toutouh, Jamal
    2022 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2022, : 30 - 35
  • [2] Generative Adversarial Networks for Medical Image Super-resolution
    Zhao, Min
    Naderian, Amirkhashayar
    Sanei, Saeid
    2021 INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING (EHB 2021), 9TH EDITION, 2021,
  • [3] Image Super-Resolution Based on Generative Adversarial Networks: A Brief Review
    Fu, Kui
    Peng, Jiansheng
    Zhang, Hanxiao
    Wang, Xiaoliang
    Jiang, Frank
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 64 (03): : 1977 - 1997
  • [4] Positron Image Super-Resolution Using Generative Adversarial Networks
    Xiong, Fang
    Liu, Jian
    Zhao, Min
    Yao, Min
    Guo, Ruipeng
    IEEE ACCESS, 2021, 9 : 121329 - 121343
  • [5] PET image super-resolution using generative adversarial networks
    Song, Tzu-An
    Chowdhury, Samadrita Roy
    Yang, Fan
    Dutta, Joyita
    NEURAL NETWORKS, 2020, 125 : 83 - 91
  • [6] RankSRGAN: Generative Adversarial Networks with Ranker for Image Super-Resolution
    Zhang, Wenlong
    Liu, Yihao
    Dong, Chao
    Qiao, Yu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3096 - 3105
  • [7] Generative adversarial networks for hyperspectral image spatial super-resolution
    Jiang Yilin
    Shao Ran
    Tang Sanqiang
    The Journal of China Universities of Posts and Telecommunications, 2020, 27 (04) : 8 - 16
  • [8] Hierarchical Generative Adversarial Networks for Single Image Super-Resolution
    Chen, Weimin
    Ma, Yuqing
    Liu, Xianglong
    Yuan, Yi
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 355 - 364
  • [9] Image super-resolution based on self-similarity generative adversarial networks
    Wang, Shuang
    Sun, Zhengxing
    Li, Qian
    IET IMAGE PROCESSING, 2023, 17 (01) : 157 - 165
  • [10] Multiscale Attention Fusion for Depth Map Super-Resolution Generative Adversarial Networks
    Xu, Dan
    Fan, Xiaopeng
    Gao, Wen
    ENTROPY, 2023, 25 (06)