Hsa_circRNA_102610 upregulation in Crohn's disease promotes transforming growth factor-β1-induced epithelial-mesenchymal transition via sponging of hsa-miR-130a-3p

被引:18
|
作者
Yin, Juan [1 ,2 ]
Ye, Yu-Lan [3 ]
Hu, Tong [3 ]
Xu, Li-Juan [3 ]
Zhang, Li-Ping [3 ]
Ji, Ru-Ning [4 ]
Li, Ping [1 ,2 ]
Chen, Qian [1 ,2 ]
Zhu, Jian-Yun [1 ,2 ]
Pang, Zhi [1 ,2 ,3 ]
机构
[1] Nanjing Med Univ, Dept Digest Dis, Affiliated Suzhou Hosp, Suzhou 215008, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Nutr Res Ctr, Affiliated Suzhou Hosp, Suzhou 215008, Jiangsu, Peoples R China
[3] Nanjing Med Univ, Dept Gastroenterol, Affiliated Suzhou Hosp, Suzhou 215008, Jiangsu, Peoples R China
[4] Nanjing Med Univ, Dept Biomed Engn, Affiliated Suzhou Hosp, Suzhou 215008, Jiangsu, Peoples R China
关键词
Hsa_circRNA_102610; Hsa-miR-130a-3p; Epithelial-mesenchymal transition; Crohn's disease; Mothers against decapentaplegic homolog 4; Transforming growth factor-beta 1; CIRCULAR RNA; INTESTINAL FIBROSIS; CELL-MIGRATION; BOWEL-DISEASE; CARCINOMA; INVASION; PROLIFERATION; INHIBITION;
D O I
10.3748/wjg.v26.i22.3034
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
BACKGROUND The incidence of inflammatory bowel disease, a chronic intestinal inflammatory disorder that includes Crohn's disease (CD) and ulcerative colitis, is rising. Circular RNAs are considered valuable diagnostic biomarkers for CD. Current evidence supports the views that epithelial-mesenchymal transition (EMT) plays an important role in CD pathogenesis, and that hsa-miR-130a-3p can inhibit transforming growth factor-beta 1 (TGF-beta 1)-induced EMT. Our previous study revealed that hsa_circRNA_102610 was upregulated in CD patients. Moreover, we predicted an interaction between hsa_circRNA_102610 and hsa-miR-130a-3p. Thus, we hypothesized that hsa_circRNA_102610 may play roles in the proliferation and EMT of intestinal epithelial cells by sponging hsa-miR-130a-3p to participate in the pathogenesis of CD. AIM To explore the mechanism of hsa_circRNA_102610 in the pathogenesis of CD. METHODS The relative expression levels of hsa_circRNA_102610 and hsa-miR-130a-3p in patients were detected by quantitative reverse transcription-polymerase chain reaction. The proliferation of human intestinal epithelial cells (HIECs) and normal-derived colon mucosa cell line 460 (NCM460) cells was detected by cell counting kit-8, 5-ethynyl-2'-deoxyuridine staining and cell cycle assays following overexpression or downregulation of hsa_circRNA_102610. Cell proliferation assays were performed as described above in a rescue experiment with hsa-miR-130a-3p mimics. The interaction of hsa_circRNA_102610 and hsa-miR-130a-3p was verified by fluorescence in situ hybridization and dual luciferase reporter assays. The relative expression levels of CyclinD1, mothers against decapentaplegic homolog 4 (SMAD4), E-cadherin, N-cadherin and Vimentin were detected by western blotting following hsa_circRNA_102610 overexpression, TGF-beta 1-induced EMT or hsa-miR-130a-3p mimic transfection (in rescue experiments). RESULTS Upregulation of hsa_circRNA_102610 was determined to be positively correlated with elevated fecal calprotectin levels in CD (r= 0.359,P= 0.007) by Pearson correlation analysis. Hsa_circRNA_102610 promoted the proliferation of HIECs and NCM460 cells, while hsa-miR-130a-3p reversed the cell proliferation-promoting effects of hsa_circRNA_102610. Fluorescence in situ hybridization and dual luciferase reporter assays showed that hsa_circRNA_102610 directly bound hsa-miR-130a-3p in NCM460 and 293T cells. An inverse correlation between downregulation of hsa-miR-130a-3p and upregulation of hsa_circRNA_102610 in CD patients was observed (r= -0.290,P= 0.024) by Pearson correlation analysis. Moreover, overexpression of hsa_circRNA_102610 promoted SMAD4 and CyclinD1 protein expression validated by western-blotting. Furthermore, over-expression of hsa_circRNA_102610 promoted TGF-beta 1 induced EMT in HIECs and NCM460 cellsviatargeting of hsa-miR-130a-3p, with increased expression of Vimentin and N-cadherin and decreased expression of E-cadherin. CONCLUSION Hsa_circRNA_102610 upregulation in CD patients could promote the proliferation and EMT of intestinal epithelial cellsviasponging of hsa-miR-130a-3p.
引用
收藏
页码:3034 / 3055
页数:22
相关论文
共 50 条
  • [21] Role of matrix metalloproteinase-9 in transforming growth factor-β1-induced epithelial-mesenchymal transition in esophageal squamous cell carcinoma
    Bai, Xue
    Li, Yun-yun
    Zhang, Hong-yan
    Wang, Feng
    He, Hong-liu
    Yao, Jin-chao
    Liu, Ling
    Li, Shan-Shan
    ONCOTARGETS AND THERAPY, 2017, 10 : 2837 - 2847
  • [22] 1α, 25-dihydroxyvitamin D3inhibits transforming growth factor β1-induced epithelial-mesenchymal transition via β-catenin pathway
    Xiong Xin-Rong
    Tian Xin-Li
    Huo Ru-Jie
    Dong Yan-Ting
    Liu Dai
    Bai Jing-Cui
    Qi Yun-Feng
    Tian Xin-Rui
    中华医学杂志(英文版), 2020, 133 (11) : 1298 - 1303
  • [23] Akt-mediated transforming growth factor-β1-induced epithelial-mesenchymal transition in cultured human esophageal squamous cancer cells
    Xuan, X.
    Zeng, Q.
    Li, Y.
    Gao, Y.
    Wang, F.
    Zhang, H.
    Wang, Z.
    He, H.
    Li, S.
    CANCER GENE THERAPY, 2014, 21 (06) : 238 - 245
  • [24] Angiotensin (1-7) Inhibits Transforming Growth Factor- Β 1-Induced Epithelial-Mesenchymal Transition of Human Keratinocyte Hacat Cells in vitro
    Jihu, Yueda
    Leng, Ruobing
    Liu, Mengchang
    Ren, Hongjing
    Xie, Defu
    Yao, Chong
    Yan, Hong
    CLINICAL COSMETIC AND INVESTIGATIONAL DERMATOLOGY, 2024, 17 : 1049 - 1058
  • [25] Quercetin inhibits transforming growth factor β1-induced epithelial-mesenchymal transition in human retinal pigment epithelial cells via the Smad pathway
    Cai, Wenting
    Yu, Donghui
    Fan, Jiaqi
    Liang, Xiuwei
    Jin, Huizi
    Liu, Chang
    Zhu, Meijiang
    Shen, Tianyi
    Zhang, Ruiling
    Hu, Weinan
    Wei, Qingquan
    Yu, Jing
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2018, 12 : 4149 - 4161
  • [26] Functional mechanism of hsa-miR-128-3p in epithelial-mesenchymal transition of pancreatic cancer cells via ZEB1 regulation
    Zheng, Tianying
    Han, Wenfei
    Wang, Aijun
    Wang, Yonggang
    PEERJ, 2022, 10
  • [27] miR-30d Blocked Transforming Growth Factor β1-Induced Epithelial-Mesenchymal Transition by Targeting Snail in Ovarian Cancer Cells
    Ye, Zhongxue
    Zhao, Le
    Li, Jie
    Chen, Wei
    Li, Xu
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2015, 25 (09) : 1574 - 1581
  • [28] Bapx1 mediates transforming growth factor-β-induced epithelial-mesenchymal transition and promotes a malignancy phenotype of gastric cancer cells
    Ouyang, Shi
    Zhu, Guodong
    Ouyang, Lei
    Luo, Yuhao
    Zhou, Rui
    Pan, Changqie
    Bin, Jianping
    Liao, Yulin
    Liao, Wangjun
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2017, 486 : 285 - 292
  • [29] Rho kinase mediates transforming growth factor-β1-induced vasculogenic mimicry formation: involvement of the epithelial-mesenchymal transition and cancer stemness activity
    Zhang, Xue
    Zhang, Jigang
    Zhou, Heming
    Liu, Gaolin
    Li, Qin
    ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2020, 52 (04) : 411 - 420
  • [30] LIM and Cysteine-Rich Domains 1 Promotes Transforming Growth Factor?1-Induced Epithelial-Mesenchymal Transition in Human Kidney 2 Cells
    Yu, Rui
    Wu, Yan
    He, Ping
    Bai, Yu
    Zhang, Yongzhe
    Bian, Xiaohui
    Sun, Guangping
    Zhang, Beiru
    LABORATORY INVESTIGATION, 2023, 103 (02)