Parametrization of spin-1 classical states

被引:5
|
作者
Giraud, Olivier [1 ]
Braun, Petr [2 ,3 ]
Braun, Daniel [4 ]
机构
[1] Univ Paris 11, CNRS, UMR 8626, LPTMS, F-91405 Orsay, France
[2] Univ Duisburg Essen, Fachbereich Phys, D-47048 Duisburg, Germany
[3] St Petersburg Univ, Inst Phys, St Petersburg 198504, Russia
[4] Univ Toulouse, CNRS, Phys Theor Lab, F-31062 Toulouse, France
来源
PHYSICAL REVIEW A | 2012年 / 85卷 / 03期
关键词
MATRIX;
D O I
10.1103/PhysRevA.85.032101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We give an explicit parametrization of the set of mixed quantum states and of the set of mixed classical states for a spin-1 Hilbert space. The boundary of the set of mixed classical states is described as a two-parameter family of ellipsoids.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Quantum and Classical Thermal Correlations in the XXZ Spin-1/2 Chain
    Xiao-Dong Tan
    Xiao-Lan Wang
    Shou-Sheng Huang
    Bai-Qi Jin
    International Journal of Theoretical Physics, 2014, 53 : 91 - 101
  • [23] CLASSICAL MOTIONS FROM PSEUDOCLASSICAL SPIN-1/2 PARTICLE MODELS
    GOMIS, J
    RAFANELLI, K
    NOVELL, M
    PHYSICAL REVIEW D, 1986, 34 (08): : 2298 - 2301
  • [24] Temperature fluctuations for a finite system of classical spin-1/2 particles
    Wang, X.
    Liu, Q. H.
    ANNALS OF PHYSICS, 2007, 322 (09) : 2168 - 2178
  • [25] GRAVITATIONAL-FIELD ABOUT A CLASSICAL SPIN-1/2 PARTICLE
    MCKEON, G
    CANADIAN JOURNAL OF PHYSICS, 1978, 56 (04) : 440 - 441
  • [26] Quantum and classical thermal correlations in the XY spin-1/2 chain
    Maziero, J.
    Guzman, H. C.
    Celeri, L. C.
    Sarandy, M. S.
    Serra, R. M.
    PHYSICAL REVIEW A, 2010, 82 (01):
  • [27] Quantum and Classical Thermal Correlations in the XXZ Spin-1/2 Chain
    Tan, Xiao-Dong
    Wang, Xiao-Lan
    Huang, Shou-Sheng
    Jin, Bai-Qi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2014, 53 (01) : 91 - 101
  • [28] Quantum-classical crossover in the spin-1/2 XXZ chain
    Fabricius, K
    McCoy, BM
    PHYSICAL REVIEW B, 1999, 59 (01) : 381 - 386
  • [29] SEMI-CLASSICAL AND VARIATIONAL APPROXIMATIONS FOR SPIN-1 MAGNETIC CHAINS
    MEAD, LR
    PAPANICOLAOU, N
    PHYSICAL REVIEW B, 1982, 26 (03): : 1416 - 1429
  • [30] Critical behavior of the classical spin-1 Ising model for magnetic systems
    Zivieri, R.
    AIP ADVANCES, 2022, 12 (03)