Role of Metabolic H2O2 Generation

被引:569
|
作者
Sies, Helmut [1 ,2 ]
机构
[1] Univ Dusseldorf, Inst Biochem & Mol Biol 1, D-40225 Dusseldorf, Germany
[2] Univ Dusseldorf, Leibniz Res Inst Environm Med, D-40225 Dusseldorf, Germany
关键词
Aquaporin; Glutathione Peroxidase; Hydrogen Peroxide; Insulin; Mitochondria; NADPH Oxidase; Peroxiredoxin; Redox; Catalase; Second Messenger; HYDROGEN-PEROXIDE PRODUCTION; PERFUSED-RAT-LIVER; AQUAPORINS FACILITATE; SUPEROXIDE-PRODUCTION; ANTIOXIDANT DEFENSE; FLUORESCENT-PROBES; REDOX REGULATION; NAD(P)H OXIDASE; COMPOUND-I; PROTEIN;
D O I
10.1074/jbc.R113.544635
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Hydrogen peroxide, the nonradical 2-electron reduction product of oxygen, is a normal aerobic metabolite occurring at about 10 nm intracellular concentration. In liver, it is produced at 50 nmol/min/g of tissue, which is about 2% of total oxygen uptake at steady state. Metabolically generated H2O2 emerged from recent research as a central hub in redox signaling and oxidative stress. Upon generation by major sources, the NADPH oxidases or Complex III of the mitochondrial respiratory chain, H2O2 is under sophisticated fine control of peroxiredoxins and glutathione peroxidases with their backup systems as well as by catalase. Of note, H2O2 is a second messenger in insulin signaling and in several growth factor-induced signaling cascades. H2O2 transport across membranes is facilitated by aquaporins, denoted as peroxiporins. Specialized protein cysteines operate as redox switches using H2O2 as thiol oxidant, making this reactive oxygen species essential for poising the set point of the redox proteome. Major processes including proliferation, differentiation, tissue repair, inflammation, circadian rhythm, and aging use this low molecular weight oxygen metabolite as signaling compound.
引用
收藏
页码:8735 / 8741
页数:7
相关论文
共 50 条
  • [21] The quantitative measurement of H2O2 generation in isolated mitochondria
    Barja, G
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2002, 34 (03) : 227 - 233
  • [22] Process integration of H2O2 generation and the ammoximation of cyclohexanone
    Liang, XH
    Mi, ZT
    Wang, YQ
    Wang, L
    Zhang, X
    Wu, W
    Min, E
    Fu, SB
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2004, 79 (06) : 658 - 662
  • [23] GENERATION OF H2O2 DURING ENZYMATIC OXIDATION OF CATECHIN
    JIANG, Y
    MILES, PW
    PHYTOCHEMISTRY, 1993, 33 (01) : 29 - 34
  • [24] ROLE OF H2O2 GENERATION IN FATTY ACID-DEPENDENT ETHANOL (E) METABOLISM
    HANDLER, JA
    THURMAN, RG
    ALCOHOL AND ALCOHOLISM, 1986, 21 (02): : A19 - A19
  • [25] O2 generation path in Fe2+/H2O2 system
    Zhao H.
    Gao X.
    Wang Z.
    Gao J.
    Huagong Xuebao, 6 (2625-2630): : 2625 - 2630
  • [26] Highly efficient generation of H2O2 at composite polyaniline/heteropolyanion electrodes:: effect of heteropolyanion structure on H2O2 yield
    Shchukin, DG
    Sviridov, DV
    ELECTROCHEMISTRY COMMUNICATIONS, 2002, 4 (05) : 402 - 405
  • [27] Generation of Pd-O for Promoting Electrochemical H2O2 Production
    Du, Jiawei
    Jiang, Shuaihu
    Zhang, Ruya
    Wang, Pai
    Ma, Chao
    Zhao, Ruijuan
    Cui, Chunhua
    Zhang, Yanning
    Kang, Yijin
    ACS CATALYSIS, 2023, 13 (10): : 6887 - 6892
  • [28] H2O2/O-3, H2O2/UV AND H2O2/FE2+ PROCESSES FOR THE OXIDATION OF HAZARDOUS WASTES
    SCHULTE, P
    BAYER, A
    KUHN, F
    LUY, T
    VOLKMER, M
    OZONE-SCIENCE & ENGINEERING, 1995, 17 (02) : 119 - 134
  • [29] Role of glutaredoxin in metabolic oxidative stress -: Glutaredoxin as a sensor of oxidative stress mediated by H2O2
    Song, JJ
    Rhee, JG
    Suntharalingam, M
    Walsh, SA
    Spitz, DR
    Lee, YJ
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (48) : 46566 - 46575
  • [30] Comparative study of the rate of decomposition of H2O2 and of atrazine by Fe(III)/H2O2, Cu(II)/H2O2, Fe(III)/Cu(II)/H2O2
    Gallard, H.
    De Laat, J.
    Legube, B.
    Revue des Sciences de l'Eau, 1999, 12 (04): : 713 - 728