FACES FOR TWO-QUBIT SEPARABLE STATES AND THE CONVEX HULLS OF TRIGONOMETRIC MOMENT CURVES

被引:0
|
作者
Kye, Seung-Hyeok [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Math, Seoul 151742, South Korea
[2] Seoul Natl Univ, Inst Math, Seoul 151742, South Korea
来源
关键词
Separable state; entanglement; trigonometric moment curve; face; extreme point; POSITIVE LINEAR-MAPS; FACIAL STRUCTURES;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We analyze the facial structures of the convex set consisting of all two-qubit separable states. One of the faces is a four-dimensional convex body generated by the trigonometric moment curve arising from polyhedral combinatorics. Another one is an eight-dimensional convex body, which is the convex hull of a homeomorphic image of the two-dimensional sphere. Extreme points consist of points on the surface, and any two of them determine an edge. We also reconstruct the trigonometric moment curve in any even-dimensional affine space using the qubit-qudit systems, and characterize the facial structures of the convex hull.
引用
收藏
页码:385 / 400
页数:16
相关论文
共 50 条
  • [41] Decoherence control: Universal protection of two-qubit states and two-qubit gates using continuous driving fields
    Chaudhry, Adam Zaman
    Gong, Jiangbin
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [42] Optimal measurement for quantum discord of two-qubit states
    Shi, Mingjun
    Sun, Chunxiao
    Jiang, Fengjian
    Yan, Xinhu
    Du, Jiangfeng
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [43] Quantum discord and geometry for a class of two-qubit states
    Li, Bo
    Wang, Zhi-Xi
    Fei, Shao-Ming
    PHYSICAL REVIEW A, 2011, 83 (02):
  • [44] Optimal estimation of entanglement and discord in two-qubit states
    Virzi, Salvatore
    Rebufello, Enrico
    Avella, Alessio
    Piacentini, Fabrizio
    Gramegna, Marco
    Berchera, Ivano Ruo
    Degiovanni, Ivo Pietro
    Genovese, Marco
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [45] Experimental adaptive quantum tomography of two-qubit states
    Struchalin, G. I.
    Pogorelov, I. A.
    Straupe, S. S.
    Kravtsov, K. S.
    Radchenko, I. V.
    Kulik, S. P.
    PHYSICAL REVIEW A, 2016, 93 (01)
  • [46] Entanglement and entropy engineering of atomic two-qubit states
    Clark, SG
    Parkins, AS
    PHYSICAL REVIEW LETTERS, 2003, 90 (04)
  • [47] Entanglement types for two-qubit states with real amplitudes
    Perdomo, Oscar
    Leyton-Ortega, Vicente
    Perdomo-Ortiz, Alejandro
    QUANTUM INFORMATION PROCESSING, 2021, 20 (03)
  • [48] Conditions for entanglement purification with general two-qubit states
    Torres, Juan Mauricio
    Bernad, Jozsef Zsolt
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [49] Local content of all pure two-qubit states
    Portmann, Samuel
    Branciard, Cyril
    Gisin, Nicolas
    PHYSICAL REVIEW A, 2012, 86 (01):
  • [50] Entanglement universality of two-qubit X-states
    Mendonca, Paulo E. M. F.
    Marchiolli, Marcelo A.
    Galetti, Diogenes
    ANNALS OF PHYSICS, 2014, 351 : 79 - 103