Size dependence in two-dimensional lateral heterostructures of transition metal dichalcogenides

被引:7
|
作者
Jin, Hao [1 ]
Michaud-Rioux, Vincent [2 ,3 ]
Gong, Zhi-Rui [1 ]
Wan, Langhui [1 ]
Wei, Yadong [1 ]
Guo, Hong [1 ,2 ,3 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen Key Lab Adv Thin Films & Applicat, Shenzhen 518060, Peoples R China
[2] McGill Univ, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada
[3] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
P-N-JUNCTIONS; ELECTRONIC-STRUCTURES; GENERATION; GROWTH; OPTOELECTRONICS; MONOLAYERS; GRAPHENE; DESIGN;
D O I
10.1039/c9tc00063a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lateral heterostructures (LHSs) of semiconductors can give rise to novel electronic and optoelectronic properties, which may open up unforeseen opportunities in materials science and device physics. However, due to the high computational cost, previous theoretical studies are usually limited to small size LHSs, which fail to demonstrate the intrinsic features of the large size LHSs. Here, by using state-of-the-art real-space density functional theory, we study the LHSs of two-dimensional (2D) monolayer semiconductors consisting of transition metal dichalcogenides (TMDs) with a length up to 4234 angstrom, which for the first time gives the same order of magnitude as compared with the experiments. The numerical calculation shows that the electronic properties of the LHSs are highly dependent on their size. In particular, for the zigzag boundary we find that the band gap decreases monotonously from 1.70 eV to 0 eV with increasing LHS size. Such behavior can be interpreted by the properties of the size dependent edge states resulting from the deformation gauge field and the corresponding effective pseudo-spin-orbit coupling. Consequently, one may precisely control and design the electronic and optoelectronic properties of 2D TMD LHSs by tuning their size. Our investigation could provide an interesting strategy for designing novel electronic and optoelectronic devices.
引用
收藏
页码:3837 / 3842
页数:6
相关论文
共 50 条
  • [31] Recent progress in two-dimensional transition metal dichalcogenides
    Li, Peiling
    Cui, Jian
    Zhou, Jiadong
    Wang, Hong
    Liu, Zheng
    Qu, Fanming
    Yang, Changli
    Jing, Xiunian
    Lu, Li
    Liu, Guangtong
    CHINESE SCIENCE BULLETIN-CHINESE, 2020, 65 (10): : 882 - 903
  • [32] Phase engineering of two-dimensional transition metal dichalcogenides
    Xiao, Yao
    Zhou, Mengyue
    Liu, Jinglu
    Xu, Jing
    Fu, Lei
    SCIENCE CHINA-MATERIALS, 2019, 62 (06) : 759 - 775
  • [33] Strong correlations in two-dimensional transition metal dichalcogenides
    Ruan, Wei
    Zhang, Yuanbo
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2023, 66 (11)
  • [34] Defect Engineering of Two-Dimensional Transition Metal Dichalcogenides
    Li Jing-Tao
    Ma Yang
    Li Shao-Xian
    He Ye-Ming
    Zhang Yong-Zhe
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2022, 38 (06) : 993 - 1015
  • [35] Thermoelectric properties of two-dimensional transition metal dichalcogenides
    Zhang, Gang
    Zhang, Yong-Wei
    JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (31) : 7684 - 7698
  • [36] Excitonic Complexes in Two-Dimensional Transition Metal Dichalcogenides
    Xiaotong Chen
    Zhen Lian
    Yuze Meng
    Lei Ma
    Su-Fei Shi
    Nature Communications, 14
  • [37] Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
    Qing Hua Wang
    Kourosh Kalantar-Zadeh
    Andras Kis
    Jonathan N. Coleman
    Michael S. Strano
    Nature Nanotechnology, 2012, 7 : 699 - 712
  • [38] Integrated Freestanding Two-dimensional Transition Metal Dichalcogenides
    Jeong, Hyun
    Oh, Hye Min
    Gokarna, Anisha
    Kim, Hyun
    Yun, Seok Joon
    Han, Gang Hee
    Jeong, Mun Seok
    Lee, Young Hee
    Lerondel, Gilles
    ADVANCED MATERIALS, 2017, 29 (18)
  • [39] Photoluminescence manipulation in two-dimensional transition metal dichalcogenides
    Gao, Minglang
    Yu, Lingxiao
    Lv, Qian
    Kang, Feiyu
    Huang, Zheng-Hong
    Lv, Ruitao
    JOURNAL OF MATERIOMICS, 2023, 9 (04) : 768 - 786
  • [40] Functionalization of Two-Dimensional Transition-Metal Dichalcogenides
    Chen, Xin
    McDonald, Aidan R.
    ADVANCED MATERIALS, 2016, 28 (27) : 5738 - 5746