Dynamics and entropy in the Zhang model of self-organized criticality

被引:3
|
作者
Kruglikov, B [1 ]
Rypdal, M [1 ]
机构
[1] Univ Tromso, Inst Math & Stat, N-9037 Tromso, Norway
关键词
sand-pile models; avalanche dynamics; skew-product systems; Lyapunov exponents; entropy; Hausdorff dimension; thermodynamic limit;
D O I
10.1007/s10955-005-9011-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We give a detailed study of dynamical properties of the Zhang model, including evaluation of topological entropy and estimates for the Lyapunov exponents and the dimension of the attractor. In the thermodynamic limit the entropy goes to zero and the Lyapunov spectrum collapses.
引用
收藏
页码:975 / 1039
页数:65
相关论文
共 50 条
  • [31] EXACTLY SOLVED MODEL OF SELF-ORGANIZED CRITICALITY
    MASLOV, S
    ZHANG, YC
    PHYSICAL REVIEW LETTERS, 1995, 75 (08) : 1550 - 1553
  • [32] Self-Organized Criticality in an Anisotropic Earthquake Model
    Li, Bin-Quan
    Wang, Sheng-Jun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (03) : 280 - 284
  • [33] SELF-ORGANIZED CRITICALITY IN A DETERMINISTIC MECHANICAL MODEL
    VIEIRA, MD
    PHYSICAL REVIEW A, 1992, 46 (10): : 6288 - 6293
  • [34] Self-Organized Criticality in an Anisotropic Earthquake Model
    李斌全
    王圣军
    CommunicationsinTheoreticalPhysics, 2018, 69 (03) : 280 - 284
  • [35] SELF-ORGANIZED CRITICALITY IN A WEIGHTED EARTHQUAKE MODEL
    Zhang, Gui-Qing
    Wang, Lin
    Chen, Tian-Lun
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2009, 20 (03): : 351 - 360
  • [36] Self-Organized Criticality in the Autowave Model of Speciation
    Garaeva, A. Y.
    Sidorova, A. E.
    Levashova, N. T.
    Tverdislov, V. A.
    MOSCOW UNIVERSITY PHYSICS BULLETIN, 2020, 75 (05) : 398 - 408
  • [37] THE NOISE SPECTRUM IN THE MODEL OF SELF-ORGANIZED CRITICALITY
    KERTESZ, J
    KISS, LB
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (09): : L433 - L440
  • [38] Self-organized criticality in a computer network model
    Yuan, Jian
    Ren, Yong
    Shan, Xiuming
    2000, American Physical Society (61):
  • [39] Eulerian walkers as a model of self-organized criticality
    Priezzhev, VB
    Dhar, D
    Dhar, A
    Krishnamurthy, S
    PHYSICAL REVIEW LETTERS, 1996, 77 (25) : 5079 - 5082
  • [40] Self-Organized Criticality in the Autowave Model of Speciation
    A. Y. Garaeva
    A. E. Sidorova
    N. T. Levashova
    V. A. Tverdislov
    Moscow University Physics Bulletin, 2020, 75 : 398 - 408