Stability of Periodic Orbits in the Averaging Theory: Applications to Lorenz and Thomas Differential Systems

被引:2
|
作者
Candido, Murilo R. [1 ]
Llibre, Jaume [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
来源
关键词
Averaging theory; circulant system; stability of periodic orbit; Lorenz system; Thomas system; LABYRINTH CHAOS;
D O I
10.1142/S0218127418300070
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide new results in studying a kind of stability of periodic orbits provided by the higher-order averaging theory. Then, we apply these results to determining the k-hyperbolicity of some periodic orbits of the Lorenz and Thomas differential systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Periodic Orbits for Some Systems of Delay Differential Equations
    Jaume LLIBRE
    Alexandrina-Alina TAR■A
    Acta Mathematica Sinica(English Series), 2008, 24 (02) : 267 - 274
  • [22] A Dirichlet criterion for the stability of periodic and relative periodic orbits in Hamiltonian systems
    Ortega, JP
    Ratiu, TS
    JOURNAL OF GEOMETRY AND PHYSICS, 1999, 32 (02) : 131 - 159
  • [23] Improving the averaging theory for computing periodic solutions of the differential equations
    Jaume Llibre
    Douglas D. Novaes
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 1401 - 1412
  • [24] Global stability of periodic orbits in relay feedback systems
    Varigonda, S
    Georgiou, TT
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 3843 - 3847
  • [25] Improving the averaging theory for computing periodic solutions of the differential equations
    Llibre, Jaume
    Novaes, Douglas D.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (04): : 1401 - 1412
  • [26] ON THE CONTROL OF STABILITY OF PERIODIC ORBITS OF COMPLETELY INTEGRABLE SYSTEMS
    Tudoran, Razvan M.
    JOURNAL OF GEOMETRIC MECHANICS, 2015, 7 (01): : 109 - 124
  • [27] Averaging theory for discontinuous piecewise differential systems
    Llibre, Jaume
    Mereu, Ana C.
    Novaes, Douglas D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (11) : 4007 - 4032
  • [28] KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS
    BIRMAN, JS
    WILLIAMS, RF
    TOPOLOGY, 1983, 22 (01) : 47 - 82
  • [29] ORBITS IN HIGHLY PERTURBED DYNAMICAL SYSTEMS .2. STABILITY OF PERIODIC ORBITS
    CONTOPOULOS, G
    ASTRONOMICAL JOURNAL, 1970, 75 (01): : 108 - +
  • [30] Crossing periodic orbits of nonsmooth Lienard systems and applications*
    Li, Tao
    Chen, Hebai
    Chen, Xingwu
    NONLINEARITY, 2020, 33 (11) : 5817 - 5838