Explicit isoperimetric constants and phase transitions in the random-cluster model

被引:0
|
作者
Häggström, O
Jonasson, J
Lyons, R
机构
[1] Gothenburg Univ, S-41296 Gothenburg, Sweden
[2] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[3] Chalmers Univ Technol, Dept Math, S-41296 Gothenburg, Sweden
来源
ANNALS OF PROBABILITY | 2002年 / 30卷 / 01期
关键词
percolation; Ising model; Potts model; planar graph; planar dual; nonamenable graph; robust phase transition;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The random-cluster model is a dependent percolation model that has applications in the study of Ising and Potts models. In this paper, several new results are obtained for the random-cluster model on nonamenable graphs with cluster parameter q greater than or equal to 1. Among these, the main ones are the absence of percolation for the free random-cluster measure at the critical value and examples of planar regular graphs with regular dual where p(c)(free)(q) > p(u)(wired)(q) for q large enough, The latter follows from considerations of isoperimetric constants, and we give the first nontrivial explicit calculations of such constants. Such considerations are also used to prove nonrobust phase transition for the Potts model on nonamenable regular graphs.
引用
收藏
页码:443 / 473
页数:31
相关论文
共 50 条
  • [21] Information percolation and cutoff for the random-cluster model
    Ganguly, Shirshendu
    Seo, Insuk
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (03) : 770 - 822
  • [22] Random-Cluster Representation of the Blume–Capel Model
    B. T. Graham
    G. R. Grimmett
    Journal of Statistical Physics, 2006, 125 : 283 - 316
  • [23] ELECTRONIC-PROPERTIES IN THE INTERACTION RANDOM-CLUSTER MODEL
    CHEN, XS
    ZHAO, JJ
    SUN, QA
    WANG, GH
    PHYSICS LETTERS A, 1995, 204 (02) : 169 - 173
  • [24] RENORMALIZATION OF CROSSING PROBABILITIES IN THE PLANAR RANDOM-CLUSTER MODEL
    Duminil-Copin, Hugo
    Tassion, Vincent
    MOSCOW MATHEMATICAL JOURNAL, 2020, 20 (04) : 711 - 740
  • [25] Random-cluster representation of the Ashkin-Teller model
    Pfister, CE
    Velenik, Y
    JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (5-6) : 1295 - 1331
  • [26] Random-cluster representation for the Blume-Capel model
    Bouabci, MB
    Carneiro, CEI
    JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (5-6) : 805 - 827
  • [27] Random-cluster representation of the ashkin-teller model
    C. -E. Pfister
    Y. Velenik
    Journal of Statistical Physics, 1997, 88 : 1295 - 1331
  • [28] Sweeny dynamics for the random-cluster model with small Q
    Peng, Zirui
    Elci, Eren Metin
    Deng, Youjin
    Hu, Hao
    PHYSICAL REVIEW E, 2023, 108 (05)
  • [29] Random-cluster representation of the Blume-Capel model
    Graham, B. T.
    Grimmett, G. R.
    JOURNAL OF STATISTICAL PHYSICS, 2006, 125 (02) : 287 - 320
  • [30] Almost sure quasilocality fails for the random-cluster model on a tree
    Haggstrom, O
    JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (5-6) : 1351 - 1361