On the Birational Geometry of the Universal Picard Variety

被引:16
|
作者
Bini, Gilberto [1 ]
Fontanari, Claudio [2 ]
Viviani, Filippo [3 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Trento, Dipartimento Matemat, I-38123 Trento, Italy
[3] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
关键词
MODULI SPACES; KODAIRA DIMENSION; EFFECTIVE DIVISORS; CURVES; BUNDLES; STACKS; SLOPES; MODELS;
D O I
10.1093/imrn/rnr045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the Kodaira dimension of the universal Picard variety P-d,P-g parameterizing line bundles of degree d on curves of genus g under the assumption that (d-g+1,2g-2)=1. We also give partial results for arbitrary degrees d and we investigate for which degrees the universal Picard varieties are birational.
引用
收藏
页码:740 / 780
页数:41
相关论文
共 50 条
  • [21] Boundedness Results in Birational Geometry
    Hacon, Christopher D.
    McKernan, James
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 427 - 449
  • [22] Perverse schobers and birational geometry
    Alexey Bondal
    Mikhail Kapranov
    Vadim Schechtman
    Selecta Mathematica, 2018, 24 : 85 - 143
  • [23] Generalised pairs in birational geometry
    Birkar, Caucher
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2021, 8 (1-2) : 5 - 24
  • [24] Perverse schobers and birational geometry
    Bondal, Alexey
    Kapranov, Mikhail
    Schechtman, Vadim
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (01): : 85 - 143
  • [25] ON THE BIRATIONAL GEOMETRY OF SCHUBERT VARIETIES
    Schmidt, Benjamin
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2015, 143 (03): : 489 - 502
  • [26] Secant varieties and birational geometry
    Peter Vermeire
    Mathematische Zeitschrift, 2002, 242 : 75 - 95
  • [27] BIRATIONAL GEOMETRY OLD AND NEW
    Grassi, Antonella
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (01) : 99 - 123
  • [28] Grassmannian Equivariant birational geometry
    Florence, Mathieu
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 674 : 81 - 98
  • [29] ON THE PICARD NUMBER OF A COMPLEX PROJECTIVE VARIETY
    SHIODA, T
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1981, 14 (03): : 303 - 321
  • [30] THE PICARD GROUP OF A COMPLEX QUOTIENT VARIETY
    FELDMULLER, D
    MANUSCRIPTA MATHEMATICA, 1989, 65 (04) : 385 - 393