On the Birational Geometry of the Universal Picard Variety

被引:16
|
作者
Bini, Gilberto [1 ]
Fontanari, Claudio [2 ]
Viviani, Filippo [3 ]
机构
[1] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Trento, Dipartimento Matemat, I-38123 Trento, Italy
[3] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
关键词
MODULI SPACES; KODAIRA DIMENSION; EFFECTIVE DIVISORS; CURVES; BUNDLES; STACKS; SLOPES; MODELS;
D O I
10.1093/imrn/rnr045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute the Kodaira dimension of the universal Picard variety P-d,P-g parameterizing line bundles of degree d on curves of genus g under the assumption that (d-g+1,2g-2)=1. We also give partial results for arbitrary degrees d and we investigate for which degrees the universal Picard varieties are birational.
引用
收藏
页码:740 / 780
页数:41
相关论文
共 50 条
  • [1] The singularities and birational geometry of the compactified universal Jacobian
    Casalaina-Martin, Sebastian
    Kass, Jesse Leo
    Viviani, Filippo
    ALGEBRAIC GEOMETRY, 2017, 4 (03): : 353 - 393
  • [2] Deformation of spherical CR structures and the universal Picard variety
    Cheng, JH
    Tsai, IH
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2000, 8 (02) : 301 - 346
  • [3] The Picard Group of the Universal Abelian Variety and the Franchetta Conjecture for Abelian Varieties
    Fringuelli, Roberto
    Pirisi, Roberto
    MICHIGAN MATHEMATICAL JOURNAL, 2019, 68 (03) : 651 - 671
  • [4] Birational geometry of some universal families of n-pointed Fano fourfolds
    Awada, Hanine
    Bolognesi, Michele
    Stagliano, Giovanni
    EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (SUPPL 1) : 130 - 146
  • [5] Birational geometry of some universal families of n-pointed Fano fourfolds
    Hanine Awada
    Michele Bolognesi
    Giovanni Staglianò
    European Journal of Mathematics, 2022, 8 : 130 - 146
  • [6] Birational geometry of surfaces
    Ciro Ciliberto
    Thomas Dedieu
    Flaminio Flamini
    Rita Pardini
    Bollettino dell'Unione Matematica Italiana, 2018, 11 (1) : 1 - 3
  • [7] Birational geometry of surfaces
    Ciliberto, Ciro
    Dedieu, Thomas
    Flamini, Flaminio
    Pardini, Rita
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2018, 11 (01): : 1 - 3
  • [8] Symplectic Birational Geometry
    Li, Tian-Jun
    Ruan, Yongbin
    NEW PERSPECTIVES AND CHALLENGES IN SYMPLECTIC FIELD THEORY, 2009, 49 : 307 - +
  • [9] BIRATIONAL GEOMETRY OF QUADRICS
    Totaro, Burt
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2009, 137 (02): : 253 - 276
  • [10] Birational and numerical geometry of the variety of complete pairs of two-point spaces on an algebraic surface
    Tikhomirov, AS
    Troshina, TL
    MATHEMATICAL NOTES, 1999, 65 (3-4) : 344 - 350