Integrability of reductions of the discrete Korteweg-de Vries and potential Korteweg-de Vries equations

被引:12
|
作者
Hone, A. N. W. [1 ]
van der Kamp, P. H. [2 ]
Quispel, G. R. W. [2 ]
Tran, D. T. [3 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
[2] La Trobe Univ, Dept Math & Stat, Melbourne, Vic, Australia
[3] Univ New S Wales, Sch Math & Stat, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
partial difference equations; integrable maps; Poisson brackets; DIFFERENCE-EQUATIONS; SOLITON-EQUATIONS; CLUSTER ALGEBRAS; MAPS; MAPPINGS; SEQUENCES; INTEGRALS; SYSTEMS;
D O I
10.1098/rspa.2012.0747
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We study the integrability of mappings obtained as reductions of the discrete Korteweg-de Vries (KdV) equation and of two copies of the discrete potential KdV (pKdV) equation. We show that the mappings corresponding to the discrete KdV equation, which can be derived from the latter, are completely integrable in the Liouville-Arnold sense. The mappings associated with two copies of the pKdV equation are also shown to be integrable.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] The functional variable method for solving the fractional Korteweg-de Vries equations and the coupled Korteweg-de Vries equations
    Matinfar, M.
    Eslami, M.
    Kordy, M.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (04): : 583 - 592
  • [12] Numerical Studies of the Fractional Korteweg-de Vries, Korteweg-de Vries-Burgers’ and Burgers’ Equations
    M. M. Khader
    Khaled M. Saad
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2021, 91 : 67 - 77
  • [13] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
    Hu, Heng-Chun
    Liu, Fei-Yan
    CHINESE PHYSICS B, 2020, 29 (04)
  • [14] Reductions to Korteweg-de Vries soliton hierarchy
    Chen, JB
    Tan, RM
    Geng, XG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (02) : 231 - 235
  • [15] Korteweg-de Vries surfaces
    Gurses, Metin
    Tek, Suleyman
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 11 - 22
  • [16] KORTEWEG-DE VRIES EQUATION
    SHABAT, AB
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (06): : 1310 - 1313
  • [17] New fractional derivatives applied to the Korteweg-de Vries and Korteweg-de Vries-Burger's equations
    Saad, Khaled M.
    Baleanu, Dumitru
    Atangana, Abdon
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 5203 - 5216
  • [18] On solitary-wave solutions for the coupled Korteweg-de Vries and modified Korteweg-de Vries equations and their dynamics
    Hong, WP
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2006, 61 (3-4): : 125 - 132
  • [19] KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (06): : 399 - 401
  • [20] Matrix Korteweg-de Vries and modified Korteweg-de Vries hierarchies: Noncommutative soliton solutions
    Carillo, Sandra
    Schiebold, Cornelia
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)