Boundary Conditions by Schwarz-Christoffel Mapping in Anatomically Accurate Hemodynamics

被引:12
|
作者
Boutsianis, Evangelos [1 ]
Gupta, Sumeet [1 ]
Boomsma, Kevin [2 ]
Poulikakos, Dimos [1 ]
机构
[1] ETH, Lab Thermodynam Emerging Technol, CH-8092 Zurich, Switzerland
[2] Creare Res & Dev Inc, Hanover, NH 03755 USA
关键词
Schwarz-Christoffel mapping; Pulsatile flow; Interpolation; Womersley; Annular domain; Hemodynamics;
D O I
10.1007/s10439-008-9571-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Appropriate velocity boundary conditions are a prerequisite in computational hemodynamics. A method for mapping analytical or experimental velocity profiles on anatomically realistic boundary cross-sections is presented. Interpolation is required because the computational and experimental domains are seldom aligned. In the absence of velocity information one alternative is the adaptation of analytical profiles based on volumetric flux constraints. The presented algorithms are based on the Schwarz-Christoffel (S-C) mapping of singly or doubly connected polygons to the unit circle or an annulus with unary external radius. S-C transformations are combined to construct a one-to-one invertible map between the target surface and the measurement domain or the support of the source analytical profile. The proposed technique permits us to segment each space separately and map one onto the other in its entirety. Tests are performed with normal velocity boundary conditions for computational simulations of blood flow in the ascending aorta and cerebrospinal fluid flow in the spinal cavity. Mappings of axisymmetric velocity profiles of the Womersley type through a simply connected circular pipe as well as through a doubly connected circular annulus, and interpolations from in-vivo phase-contrast magnetic resonance imaging velocity measurements under instantaneous volumetric flux constraints are considered.
引用
收藏
页码:2068 / 2084
页数:17
相关论文
共 50 条
  • [41] ON THE CROWDING OF PARAMETERS ASSOCIATED WITH SCHWARZ-CHRISTOFFEL TRANSFORMATIONS
    KRIKELES, BC
    RUBIN, RL
    APPLIED MATHEMATICS AND COMPUTATION, 1988, 28 (04) : 297 - 308
  • [43] Schwarz-Christoffel Transformation for Cladding Conducting Lines
    Su, Yu-Hsin
    Yang, Jyh-Shinn
    Chang, Ching-Ray
    IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (10) : 3800 - 3803
  • [44] Application of Schwarz-Christoffel mapping to permanent-magnet linear motor analysis
    Krop, D. C. J.
    Lomonova, E. A.
    Vandenput, A. J. A.
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (03) : 352 - 359
  • [45] Calculating capacitance and analyzing nonlinearity of micro-accelerometers by Schwarz-Christoffel mapping
    He, Jiangbo
    Xie, Jin
    He, Xiaoping
    Du, Lianming
    Zhou, Wu
    Wang, Libin
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2014, 20 (06): : 1195 - 1203
  • [46] Schwarz-Christoffel Formula for Multiply Connected Domains
    Mityushev, Vladimir
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2012, 12 (02) : 449 - 463
  • [47] IDEAL TRANSMISSION FUNCTIONS AS SCHWARZ-CHRISTOFFEL TRANSFORMATIONS
    SABLATASH, M
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1969, CT16 (04): : 550 - +
  • [48] Conformal mapping: Schwarz-Christoffel method for flux-switching PM machines
    Esin Ilhan
    Emilia T Motoasca
    Johan JH Paulides
    Elena A Lomonova
    Mathematical Sciences, 2012, 6 (1)
  • [49] Determination of parameter values in the Schwarz-Christoffel transformation
    Ramos Fernandez, Julio C.
    Rivas, Jesus
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2008, 26 (1-2): : 29 - 40
  • [50] ON THE GENERALIZED SCHWARZ-CHRISTOFFEL MAPPINGS AND THEIR NUMERICAL IMPLEMENTATION
    FLORYAN, JM
    ZEMACH, C
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1989, 69 (04): : T75 - T77