Boundary Conditions by Schwarz-Christoffel Mapping in Anatomically Accurate Hemodynamics

被引:12
|
作者
Boutsianis, Evangelos [1 ]
Gupta, Sumeet [1 ]
Boomsma, Kevin [2 ]
Poulikakos, Dimos [1 ]
机构
[1] ETH, Lab Thermodynam Emerging Technol, CH-8092 Zurich, Switzerland
[2] Creare Res & Dev Inc, Hanover, NH 03755 USA
关键词
Schwarz-Christoffel mapping; Pulsatile flow; Interpolation; Womersley; Annular domain; Hemodynamics;
D O I
10.1007/s10439-008-9571-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Appropriate velocity boundary conditions are a prerequisite in computational hemodynamics. A method for mapping analytical or experimental velocity profiles on anatomically realistic boundary cross-sections is presented. Interpolation is required because the computational and experimental domains are seldom aligned. In the absence of velocity information one alternative is the adaptation of analytical profiles based on volumetric flux constraints. The presented algorithms are based on the Schwarz-Christoffel (S-C) mapping of singly or doubly connected polygons to the unit circle or an annulus with unary external radius. S-C transformations are combined to construct a one-to-one invertible map between the target surface and the measurement domain or the support of the source analytical profile. The proposed technique permits us to segment each space separately and map one onto the other in its entirety. Tests are performed with normal velocity boundary conditions for computational simulations of blood flow in the ascending aorta and cerebrospinal fluid flow in the spinal cavity. Mappings of axisymmetric velocity profiles of the Womersley type through a simply connected circular pipe as well as through a doubly connected circular annulus, and interpolations from in-vivo phase-contrast magnetic resonance imaging velocity measurements under instantaneous volumetric flux constraints are considered.
引用
收藏
页码:2068 / 2084
页数:17
相关论文
共 50 条
  • [1] Boundary Conditions by Schwarz-Christoffel Mapping in Anatomically Accurate Hemodynamics
    Evangelos Boutsianis
    Sumeet Gupta
    Kevin Boomsma
    Dimos Poulikakos
    Annals of Biomedical Engineering, 2008, 36 : 2068 - 2084
  • [2] CONVEXITY AND THE SCHWARZ-CHRISTOFFEL MAPPING
    KAPLAN, W
    MICHIGAN MATHEMATICAL JOURNAL, 1993, 40 (02) : 217 - 225
  • [3] Schwarz-Christoffel mapping of the annulus
    DeLillo, TK
    Elcrat, AR
    Pfaltzgraff, JA
    SIAM REVIEW, 2001, 43 (03) : 469 - 477
  • [4] SCHWARZ-CHRISTOFFEL METHODS FOR CONFORMAL MAPPING OF REGIONS WITH A PERIODIC BOUNDARY
    FLORYAN, JM
    ZEMACH, C
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 46 (1-2) : 77 - 102
  • [5] Improvements to the algorithm for inverse Schwarz-Christoffel mapping
    Qian, J
    Chang, CW
    PROCEEDINGS OF THE FOURTH INTERNATIONAL SYMPOSIUM ON ANTENNAS AND EM THEORY (ISAE'97), 1997, : 396 - 399
  • [6] Boundary parameter matching for isogeometric analysis using Schwarz-Christoffel mapping
    Ji, Ye
    Moller, Matthias
    Yu, Yingying
    Zhu, Chungang
    ENGINEERING WITH COMPUTERS, 2024, 40 (06) : 3929 - 3947
  • [7] Analyzing an electromechanical actuator by Schwarz-Christoffel mapping
    Markovic, M
    Jufer, M
    Perriard, Y
    IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) : 1858 - 1863
  • [8] Schwarz-Christoffel mapping of multiply connected domains
    T. K. Delillo
    A. R. Elcrat
    J. A. Pfaltzgraff
    Journal d’Analyse Mathematique, 2004, 94 : 17 - 47
  • [9] Revisiting the crowding phenomenon in Schwarz-Christoffel mapping
    Banjai, L.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (02): : 618 - 636
  • [10] Schwarz-Christoffel mapping of multiply connected domains
    DeLillo, TK
    Elcrat, AR
    Pfaltzgraff, JA
    JOURNAL D ANALYSE MATHEMATIQUE, 2004, 94 (1): : 17 - 47