PHOTOMETRIC AMBIENT OCCLUSION FROM SPARSELY SAMPLED ILLUMINATIONS

被引:0
|
作者
Ma, Yuwei [1 ,3 ]
Shang, Yafei [1 ,3 ]
Wan, Liang [2 ]
Feng, Wei [1 ,3 ]
机构
[1] Tianjin Univ, Sch Comp Sci & Technol, Tianjin, Peoples R China
[2] Tianjin Univ, Sch Comp Software, Tianjin, Peoples R China
[3] Tianjin Univ, Tianjin Key Lab Cognit Comp & Applicat, Tianjin, Peoples R China
关键词
Photometric ambient occlusion; sparse illuminations; relative entropy minization;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Photometric ambient occlusion estimation is to recover the local visibility of a scene from multiple illuminations at a fixed viewpoint. Its effectiveness is highly dependent on the amount of illuminations. In this paper, we study how to reliably extract photometric ambient occlusion from sparsely sampled illuminations. We specifically propose an effective relative entropy minimization framework to encourage the consistency between the data observation and the theoretical distribution. Our extensive results on benchmark datasets show the effectiveness and accuracy of the proposed method. We also demonstrate the improvement of our method in producing high-quality reflectance.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Maximum entropy image reconstruction from sparsely sampled coherent field data
    Battle, DJ
    Harrison, RP
    Hedley, M
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (08) : 1139 - 1147
  • [32] Telescope alignment from sparsely sampled wavefront measurements over pupil subapertures
    Bloemhof, E. E.
    An, X.
    Kuan, G.
    Moore, D.
    O'Shay, B.
    Page, N.
    Tang, H.
    APPLIED OPTICS, 2012, 51 (03) : 394 - 400
  • [33] Population insulin sensitivity from sparsely sampled oral glucose tolerance tests
    Stefanovski, Darko
    Vellanki, Priyathama
    Smiley-Byrd, Dawn D.
    Umpierrez, Guillermo E.
    Boston, Raymond C.
    METABOLISM-CLINICAL AND EXPERIMENTAL, 2020, 110
  • [34] Estimating the amplitude scintillation index from sparsely sampled phase screen data
    Beach, TL
    Pedersen, TR
    Starks, MJ
    Su, SY
    RADIO SCIENCE, 2004, 39 (05) : RS5001 - 1
  • [35] CNN-Based Classification of IMRT Errors from Sparsely Sampled Measurements
    Maloney, L. J.
    Yan, G.
    Potter, N.
    Mund, K.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [36] From obscurances to ambient occlusion: A survey
    Àlex Méndez-Feliu
    Mateu Sbert
    The Visual Computer, 2009, 25 : 181 - 196
  • [37] From obscurances to ambient occlusion: A survey
    Mendez-Feliu, Alex
    Sbert, Mateu
    VISUAL COMPUTER, 2009, 25 (02): : 181 - 196
  • [38] Support Recovery With Sparsely Sampled Free Random Matrices
    Tulino, Antonia M.
    Caire, Giuseppe
    Verdu, Sergio
    Shamai , Shlomo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2013, 59 (07) : 4243 - 4271
  • [39] Rejoinder on: dynamic relations for sparsely sampled Gaussian processes
    Hans-Georg Müller
    Wenjing Yang
    TEST, 2010, 19 : 60 - 67
  • [40] Uncertainty Suppression Methods for the Exploration of Sparsely Sampled Fields
    Yonan, Sargis S.
    Curry, Renwick E.
    Elkaim, Gabriel Hugh
    PROCEEDINGS OF THE 32ND INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2019), 2019, : 2480 - 2511