Simulation of non-Abelian gauge theories with optical lattices

被引:180
|
作者
Tagliacozzo, L. [1 ]
Celi, A. [1 ]
Orland, P. [2 ,3 ]
Mitchell, M. W. [1 ,4 ]
Lewenstein, M. [1 ,4 ]
机构
[1] ICFO Inst Photon Sci, E-08860 Castelldefels, Barcelona, Spain
[2] CUNY, Baruch Coll, New York, NY 10010 USA
[3] CUNY, Grad Sch & Univ Ctr, New York, NY 10010 USA
[4] ICREA Inst Catalana Recerca & Estudis Avancats, Barcelona 08010, Spain
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
关键词
QUANTUM SIMULATIONS; MOTT INSULATOR; SUPERCONDUCTIVITY; CONFINEMENT; MAGNETS; PHYSICS; MATRIX; MODELS; QUARKS; SPIN;
D O I
10.1038/ncomms3615
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors).
引用
收藏
页数:8
相关论文
共 50 条
  • [31] REGGEIZATION OF FERMION IN NON-ABELIAN GAUGE THEORIES
    FADIN, VS
    SHERMAN, VE
    [J]. JETP LETTERS, 1976, 23 (10) : 548 - 551
  • [32] NON-ABELIAN GAUGE THEORIES AND TRIANGLE ANOMALIES
    COSTA, G
    MARINUCCI, T
    TONIN, M
    JULVE, J
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1977, 38 (04): : 373 - 412
  • [33] FERMIONS AND VORTEX SOLUTIONS IN ABELIAN AND NON-ABELIAN GAUGE THEORIES
    DEVEGA, HJ
    [J]. PHYSICAL REVIEW D, 1978, 18 (08): : 2932 - 2944
  • [34] Increasing potentials in classical non-Abelian and Abelian gauge theories
    Singleton, D
    Yoshida, A
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (26): : 4823 - 4830
  • [35] GAUGE-INVARIANT QUANTIZATION OF ABELIAN AND NON-ABELIAN THEORIES
    HAN, NS
    PERVUSHIN, VN
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1989, 37 (08): : 611 - 655
  • [36] Non-Abelian gauge potentials driven localization transition in quasiperiodic optical lattices
    Guan, En Guo
    Yu, Hang
    Wang, Gang
    [J]. PHYSICS LETTERS A, 2020, 384 (07)
  • [37] CANONICAL QUANTIZATION OF NON-ABELIAN GAUGE THEORIES IN AXIAL GAUGE
    CHODOS, A
    [J]. PHYSICAL REVIEW D, 1978, 17 (10): : 2624 - 2636
  • [38] Entanglement entropy in lattices with non-Abelian gauge groups
    Hategan-Marandiuc, M.
    [J]. PHYSICAL REVIEW D, 2024, 109 (09)
  • [39] Search for efficient formulations for Hamiltonian simulation of non-Abelian lattice gauge theories
    Davoudi, Zohreh
    Raychowdhury, Indrakshi
    Shaw, Andrew
    [J]. PHYSICAL REVIEW D, 2021, 104 (07)
  • [40] Hamiltonian formulation of non-Abelian noncommutative gauge theories
    Amorim, R
    Farias, FA
    [J]. PHYSICAL REVIEW D, 2002, 65 (06)