ON APPROXIMATION PROPERTIES OF STANCU VARIANT λ-SZASZ-MIRAKJAN-DURRMEYER OPERATORS

被引:1
|
作者
Aslan, Resat [1 ]
Rathour, Laxmi [2 ]
机构
[1] Harran Univ, Fac Sci & Arts, TR-63300 Sanliurfa, Turkey
[2] Ward Number 16,Bhagatbandh, Anuppur 484224, Madhya Pradesh, India
来源
KOREAN JOURNAL OF MATHEMATICS | 2022年 / 30卷 / 03期
关键词
Lipschitz-type class; Sz?sz-Mirakjan-Durrmeyer operators; Weighted ap-proximation; Peetre?s K-functional; Voronovskaya type asymptotic theorem; CONVERGENCE;
D O I
10.11568/kjm.2022.30.3.539
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we aim to obtain several approximation properties of Stancu form Szasz-Mirakjan-Durrmeyer operators based on Be ' zier basis functions with shape parameter lambda E [-1, 1]. We estimate some auxiliary results such as moments and central moments. Then, we obtain the order of convergence in terms of the Lipschitz-type class functions and Peetre's K-functional. Further, we prove weighted approximation theorem and also Voronovskaya-type asymptotic theorem. Finally, to see the accuracy and effectiveness of discussed operators, we present comparison of the convergence of constructed operators to certain functions with some graphical illustrations under certain parameters.
引用
收藏
页码:539 / 553
页数:15
相关论文
共 50 条
  • [31] (p, q)-Generalization of Szasz-Mirakjan operators and their approximation properties
    Kara, Mustafa
    Mahmudov, Nazim, I
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [32] A Stancu variant of Beta-Szasz operators
    Gupta, Vijay
    GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (01) : 75 - 82
  • [33] Approximation by Complex Szasz-Mirakyan-Stancu-Durrmeyer Operators in Compact Disks under Exponential Growth
    Gal, Sorin G.
    Gupta, Vijay
    FILOMAT, 2015, 29 (05) : 1127 - 1136
  • [34] Approximation Properties of Some Modified Szasz-Mirakjan-Kantorovich Operators
    Yadav, R.
    Meher, R.
    Mishra, V. N.
    NUMERICAL ANALYSIS AND APPLICATIONS, 2022, 15 (02) : 170 - 185
  • [35] Approximation properties for the genuine modified Bernstein-Durrmeyer-Stancu operators
    Qing-bo Cai
    Ülkü Dinlemez Kantar
    Bayram Çekim
    Applied Mathematics-A Journal of Chinese Universities, 2020, 35 : 468 - 478
  • [36] Approximation properties for the genuine modified Bernstein-Durrmeyer-Stancu operators
    Cai Qing-bo
    Kantar, Ulku Dinlemez
    Cekim, Bayram
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2020, 35 (04) : 468 - 478
  • [37] Approximation by modified Szasz-Durrmeyer operators
    Acar, Tuncer
    Ulusoy, Gulsum
    PERIODICA MATHEMATICA HUNGARICA, 2016, 72 (01) : 64 - 75
  • [38] Approximation properties for the genuine modified Bernstein-Durrmeyer-Stancu operators
    CAI Qing-bo
    ülkü Dinlemez Kantar
    Bayram ?ekim
    Applied Mathematics:A Journal of Chinese Universities, 2020, 35 (04) : 468 - 478
  • [39] APPROXIMATION BY GENERALIZED q-SZASZ-MIRAKJAN OPERATORS
    Khan, Taqseer
    Saif, Mohd
    Khan, Shuzaat Ali
    JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 12 (06): : 9 - 21
  • [40] Approximation by a generalization of Szasz-Mirakjan type operators
    Siddiqui, Mohammed Arif
    Gupta, Nandita
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (04): : 575 - 583