Operators with common hypercyclic subspaces

被引:0
|
作者
Aron, R [1 ]
Bès, J
León, E
Peris, A
机构
[1] Kent State Univ, Dept Math, Kent, OH 44242 USA
[2] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[3] Univ Cadiz, Fac Derecho, Cadiz 11402, Spain
[4] Univ Politecn Valencia, D Matemat Aplicada, E-46022 Valencia, Spain
关键词
hypercyclic vectors; subspaces; and operators; universal families;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a reasonable sufficient condition for a countable family of operators to have a common hypercyclic subspace. We also extend a result of the third author and A. Montes [22], thereby obtaining a common hypercyclic subspace for certain countable families of compact perturbations of operators of norm no larger than one.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 50 条
  • [11] Subspaces of Frequently Hypercyclic Functions for Sequences of Composition Operators
    L. Bernal-González
    M. C. Calderón-Moreno
    A. Jung
    J. A. Prado-Bassas
    Constructive Approximation, 2019, 50 : 323 - 339
  • [12] Hypercyclic subspaces for sequences of finite order differential operators
    Bernal-Gonzalez, L.
    Calderon-Moreno, M. C.
    Lopez-Salazar, J.
    Prado-Bassas, J. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 546 (01)
  • [13] Common hypercyclic vectors for composition operators
    Bayart, F
    JOURNAL OF OPERATOR THEORY, 2004, 52 (02) : 353 - 370
  • [14] Common hypercyclic vectors for families of operators
    Gallardo-Gutierrez, Eva A.
    Partington, Jonathan R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) : 119 - 126
  • [15] EXISTENCE OF COMMON HYPERCYCLIC VECTORS FOR TRANSLATION OPERATORS
    Tsirivas, Nikos
    JOURNAL OF OPERATOR THEORY, 2018, 80 (02) : 257 - 294
  • [16] Construction of dense maximal-dimensional hypercyclic subspaces for Rolewicz operators
    Bernal-Gonzalez, L.
    Calderon-Moreno, M. C.
    Fernandez-Sanchez, J.
    Munoz-Fernandez, G. A.
    Seoane-Sepulveda, J. B.
    CHAOS SOLITONS & FRACTALS, 2022, 162
  • [17] Hypercyclic subspaces in omega
    Bès, J
    Conejero, JA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 316 (01) : 16 - 23
  • [18] Frequently hypercyclic subspaces
    Bonilla, A.
    Grosse-Erdmann, K. -G.
    MONATSHEFTE FUR MATHEMATIK, 2012, 168 (3-4): : 305 - 320
  • [19] HEREDITARILY HYPERCYCLIC SUBSPACES
    Menet, Quentin
    JOURNAL OF OPERATOR THEORY, 2015, 73 (02) : 385 - 405
  • [20] Frequently hypercyclic subspaces
    A. Bonilla
    K.-G. Grosse-Erdmann
    Monatshefte für Mathematik, 2012, 168 : 305 - 320