Weighted composite quantile regression estimation of DTARCH models

被引:26
|
作者
Jiang, Jiancheng [1 ]
Jiang, Xuejun [2 ,3 ]
Song, Xinyuan [4 ]
机构
[1] Univ N Carolina, Charlotte, NC 28223 USA
[2] South Univ Sci & Technol, Shenzhen, Guangdong, Peoples R China
[3] Zhongnan Univ Econ & Law, Wuhan, Hubei, Peoples R China
[4] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China
来源
ECONOMETRICS JOURNAL | 2014年 / 17卷 / 01期
关键词
Conditional heteroscedasticity; Double-threshold; Weighted composite quantile regression; ARCH; HETEROSCEDASTICITY; INFERENCE; SELECTION;
D O I
10.1111/ectj.12023
中图分类号
F [经济];
学科分类号
02 ;
摘要
In modelling volatility in financial time series, the double-threshold autoregressive conditional heteroscedastic (DTARCH) model has been demonstrated as a useful variant of the autoregressive conditional heteroscedastic (ARCH) models. In this paper, we propose a weighted composite quantile regression method for simultaneously estimating the autoregressive parameters and the ARCH parameters in the DTARCH model. This method involves a sequence of weights and takes a data-driven weighting scheme to maximize the asymptotic efficiency of the estimators. Under regularity conditions, we establish asymptotic distributions of the proposed estimators for a variety of heavy- or light-tailed error distributions. Simulations are conducted to compare the performance of different estimators, and the proposed approach is used to analyse the daily S&P 500 Composite index, both of which endorse our theoretical results.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 50 条
  • [41] Bias-corrected quantile regression estimation of censored regression models
    P. Čížek
    S. Sadikoglu
    [J]. Statistical Papers, 2018, 59 : 215 - 247
  • [42] Bias-corrected quantile regression estimation of censored regression models
    Cizek, P.
    Sadikoglu, S.
    [J]. STATISTICAL PAPERS, 2018, 59 (01) : 215 - 247
  • [43] B-spline estimation for partially linear varying coefficient composite quantile regression models
    Jin, Jun
    Hao, Chenyan
    Ma, Tiefeng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (21) : 5322 - 5335
  • [44] Composite quantile regression estimation of linear error-in-variable models using instrumental variables
    Yang, Weiming
    Yang, Yiping
    [J]. METRIKA, 2020, 83 (01) : 1 - 16
  • [45] Composite quantile regression estimation of linear error-in-variable models using instrumental variables
    Weiming Yang
    Yiping Yang
    [J]. Metrika, 2020, 83 : 1 - 16
  • [46] A weighted linear quantile regression
    Huang, Mei Ling
    Xu, Xiaojian
    Tashnev, Dmitry
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (13) : 2596 - 2618
  • [47] Weighted censored quantile regression
    Vasudevan, Chithran
    Variyath, Asokan Mulayath
    Fan, Zhaozhi
    [J]. SURVEY METHODOLOGY, 2019, 45 (01) : 127 - 144
  • [48] Empirical likelihood weighted composite quantile regression with partially missing covariates
    Sun, Jing
    Ma, Yunyan
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2017, 29 (01) : 137 - 150
  • [49] Weighted composite quantile inference for nearly nonstationary autoregressive models
    Liu, Bingqi
    Pang, Tianxiao
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2024,
  • [50] Estimation of linear composite quantile regression using EM algorithm
    Tian, Yuzhu
    Zhu, Qianqian
    Tian, Maozai
    [J]. STATISTICS & PROBABILITY LETTERS, 2016, 117 : 183 - 191