Molecular Approach to Hopfield Neural Network

被引:15
|
作者
Laskowski, Lukasz [1 ,2 ]
Laskowska, Magdalena [2 ]
Jelonkiewicz, Jerzy [1 ]
Boullanger, Arnaud [3 ]
机构
[1] Czestochowa Tech Univ, Dept Comp Engn, PL-42200 Czestochowa, Poland
[2] Czestochowa Tech Univ, Inst Phys, PL-42200 Czestochowa, Poland
[3] Univ Montpellier 2, Chim Mol & Org Solide, Inst Charles Gerhardt, UMR CC 5253 1701, F-34095 Montpellier 5, France
关键词
Hopfield neural network; Artificial neuron; Spin-glass; Molecular magnet; MESOPOROUS SILICA; FUZZY;
D O I
10.1007/978-3-319-19324-3_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The present article puts forward a completely new technology development, a spin glass-like molecular implementation of the Hopfield neural structure. This novel approach uses magnetic molecules homogenously distributed in mesoporous silica matrix, which forms a base for a converting unit, an equivalent of a neuron in the Hopfield network. Converting units interact with each other via a fully controlled magnetic fields, which corresponds to weighted interconnections in the Hopfield network. This novel technology enables building fast, high-density content addressable associative memories. In particular, it is envisaged that in the future this approach can be scaled up to mimic memory with human-like characteristics. This would be a breakthrough in artificial brain implementations and usher in a new type of highly intelligent beings. Another application relates to systems designed for multi-objective optimization (multiple criteria decision making).
引用
收藏
页码:72 / 78
页数:7
相关论文
共 50 条
  • [41] Constrained economic dispatch with prohibited operating zones: A Hopfield neural network approach
    Yalcinoz, T
    Altun, H
    Hasan, U
    [J]. MELECON 2000: INFORMATION TECHNOLOGY AND ELECTROTECHNOLOGY FOR THE MEDITERRANEAN COUNTRIES, VOLS 1-3, PROCEEDINGS, 2000, : 570 - 573
  • [42] Fundamental properties of quaternionic Hopfield neural network
    Isokawa, Teijiro
    Nishimura, Haruhiko
    Kamiura, Naotake
    Matsui, Nobuyuki
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 218 - 223
  • [43] Associative memory in quaternionic hopfield neural network
    Isokawa, Teijiro
    Nishimura, Haruhiko
    Kamiura, Naotake
    Matsui, Nobuyuki
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2008, 18 (02) : 135 - 145
  • [44] SATURATION LEVEL OF THE HOPFIELD MODEL FOR NEURAL NETWORK
    CRISANTI, A
    AMIT, DJ
    GUTFREUND, H
    [J]. EUROPHYSICS LETTERS, 1986, 2 (04): : 337 - 341
  • [45] A fast adaptive algorithm for Hopfield neural network
    Zhao, XC
    Wang, XG
    Tang, Z
    Tamura, H
    Ishii, M
    Zeng, GZ
    [J]. SICE 2003 ANNUAL CONFERENCE, VOLS 1-3, 2003, : 638 - 642
  • [46] Cloud Hopfield Neural Network Analysis And Simulation
    Singh, Narotam
    Kapoor, Amita
    [J]. 2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2015, : 203 - 209
  • [47] SUPERRESOLUTION ALGORITHMS FOR A MODIFIED HOPFIELD NEURAL NETWORK
    ABBISS, JB
    BRAMES, BJ
    FIDDY, MA
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (07) : 1516 - 1523
  • [48] Hopfield Neural Network for Seismic Velocity Picking
    Huang, Kou-Yuan
    Yang, Jia-Rong
    [J]. PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 1146 - 1153
  • [49] FPGA placement by using Hopfield neural network
    Kos, Andrzej
    Nagorny, Zbigniew
    [J]. MICROELECTRONICS INTERNATIONAL, 2009, 26 (01) : 22 - 32
  • [50] Stability analysis of a delayed Hopfield neural network
    Guo, SG
    Huang, LH
    [J]. PHYSICAL REVIEW E, 2003, 67 (06):