Stability analysis of Takagi-Sugeno systems using a switched fuzzy Lyapunov function

被引:29
|
作者
Elias, Leandro J. [1 ]
Faria, Flavio A. [2 ]
Araujo, Rayza [3 ]
Oliveira, Vilma A. [3 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Sao Paulo, Dept Matemat & Educ, Araraquara, SP, Brazil
[2] Sao Paulo State Univ UNESP, Inst Quim, Dept Engn Fis & Matemat, Araraquara, SP, Brazil
[3] Univ Sao Paulo, Dept Engn Eletr & Comp, Sao Carlos, Brazil
基金
巴西圣保罗研究基金会;
关键词
Takagi-Sugeno systems; Switched fuzzy Lyapunov functions; Linear matrix inequalities; Domain of attraction estimates; Finite polytopic representation; H-INFINITY CONTROL; NONLINEAR-SYSTEMS; STABILIZATION; ATTRACTION; DESIGN; DOMAIN;
D O I
10.1016/j.ins.2020.07.020
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a switched fuzzy Lyapunov function approach is proposed to analyze the stability of continuous-time Takagi-Sugeno fuzzy systems. The results are established by exploring properties of the membership functions. The key point is that the time derivatives of the membership functions are represented as a finite polytope and less conservative linear matrix inequalities are obtained. Numerical examples illustrate the efficiency of the new stabilizing conditions. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:43 / 57
页数:15
相关论文
共 50 条
  • [31] Membership Function Independent Global Stability Condition for Takagi-Sugeno Fuzzy Systems
    Asai, Yuto
    Itami, Taku
    Yoneyama, Jun
    [J]. 2022 JOINT 12TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS AND 23RD INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (SCIS&ISIS), 2022,
  • [32] Quadratic stability analysis of the Takagi-Sugeno fuzzy model
    Kiriakidis, K
    Grivas, A
    Tzes, A
    [J]. FUZZY SETS AND SYSTEMS, 1998, 98 (01) : 1 - 14
  • [33] A Less Conservative LMI condition for stability analysis of Continuous-Time Takagi-Sugeno Fuzzy Systems via a New Fuzzy Lyapunov Function
    Lee, Dong Hwan
    Park, Jin Bae
    Joo, Young Hoon
    Jeong, Hyun Suk
    [J]. 2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [34] NON-MONOTONIC LYAPUNOV FUNCTIONS FOR STABILITY ANALYSIS AND STABILIZATION OF DISCRETE TIME TAKAGI-SUGENO FUZZY SYSTEMS
    Derakhshan, Siavash Fakhimi
    Fatehi, Alireza
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2014, 10 (04): : 1567 - 1586
  • [35] Robust Stabilization for Discrete Uncertain Takagi-Sugeno Fuzzy Systems Based on a Piecewise Lyapunov Function
    Zhang, Songtao
    Hou, Yanting
    Zhao, Xiaowei
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (17) : 7132 - 7140
  • [36] Flexible Takagi-Sugeno fuzzy systems
    Cpalka, K
    Rutkowski, L
    [J]. Proceedings of the International Joint Conference on Neural Networks (IJCNN), Vols 1-5, 2005, : 1764 - 1769
  • [37] On the mappings preserving the Lyapunov stability of Takagi–Sugeno fuzzy systems
    V. S. Denisenko
    A. A. Martynyuk
    V. I. Slyn’ko
    [J]. Ukrainian Mathematical Journal, 2009, 61 : 764 - 774
  • [38] Observers for Takagi-Sugeno fuzzy systems
    Bergsten, P
    Palm, R
    Driankov, D
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2002, 32 (01): : 114 - 121
  • [39] On Switched Regulator Design of Uncertain Nonlinear Systems Using Takagi-Sugeno Fuzzy Models
    de Souza, Wallysonn A.
    Teixeira, Marcelo C. M.
    Cardim, Rodrigo
    Assuncao, Edvaldo
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (06) : 1720 - 1727
  • [40] A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design
    Rhee, BJ
    Won, S
    [J]. FUZZY SETS AND SYSTEMS, 2006, 157 (09) : 1211 - 1228