Beneficial effect of phase transition on kinetics of deintercalation/intercalation process in lithium-manganese spinel

被引:2
|
作者
Kondracki, Lukasz [1 ,2 ]
Molenda, Janina [1 ,2 ]
机构
[1] AGH Univ Sci & Technol, Dept Hydrogen Energy, Fac Energy & Fuels, Al A Mickiewicza 30, PL-30059 Krakow, Poland
[2] AGH Univ Sci & Technol, AGH Ctr Energy, Ul Czarnowiejska 36, PL-30054 Krakow, Poland
关键词
Electrochemical deintercalation; Manganese spinel; Electrical properties; CHARGE-TRANSPORT MECHANISM; ELECTROCHEMICAL PROPERTIES; ELECTRONIC-STRUCTURE; 3D SUBSTITUTIONS; ION DIFFUSION; LIMN2O4; MN; PERFORMANCES; SUBLATTICE; MORPHOLOGY;
D O I
10.1007/s10008-018-04187-0
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, a detailed characterization of LixMn2O4 spinel oxides is shown to demonstrate the correlation between the anomalous thermoelectric properties of this cathode material and its crystal and electronic structure. The analysis of structural and transport in LixMn2O4 cathode materials obtained by solid-state reaction and sol-gel method allows formulating a conclusion that the performance of manganese spinel-based cathode depends on the occurrence of anomalous electron effects. The recorded maxima in absolute values of thermoelectric power correspond to high diffusivity of electrons at the Fermi level. A correlation between the occurrence of thermoelectric peaks and effectiveness of deintercalation/intercalation of lithium has been shown. The obtained results indicate a beneficial effect of phase transition on electrochemical properties of lithium-manganese spinel cathode material.
引用
收藏
页码:837 / 846
页数:10
相关论文
共 50 条
  • [21] Effect of allied and alien ions on the EPR spectrum of Mn4+-containing lithium-manganese spinel oxides
    Zhecheva, E
    Stoyanova, R
    SOLID STATE COMMUNICATIONS, 2005, 135 (07) : 405 - 410
  • [22] Structural, thermal and electrical properties of lithium-manganese spinel with a sulphur-substituted oxygen sublattice
    Molenda, M
    Dziembaj, R
    Kotwica, A
    Lasocha, W
    MATERIALS SCIENCE-POLAND, 2006, 24 (01): : 85 - 93
  • [23] Nanostructured Iron-Substituted Lithium-Manganese Spinel as an Electrode Material for Hybrid Electrochemical Capacitor
    Lisovsky, R.
    Ostafiychuk, B.
    Budzulyak, I.
    Kotsyubynsky, V.
    Boychuk, A.
    Rachiy, B.
    ACTA PHYSICA POLONICA A, 2018, 133 (04) : 876 - 878
  • [24] Effects of temperature on the intercalation-deintercalation process of lithium ion in LiCOO2
    Zhuang Quan-Chao
    Wei Guo-Zhen
    Xu Jin-Mei
    Fan Xiao-Yong
    Dong Quan-Feng
    Sun Shi-Gang
    ACTA CHIMICA SINICA, 2008, 66 (07) : 722 - 728
  • [25] High-pressure energy dispersive X-ray diffraction investigation of lithium-manganese spinel
    Piszora, Pawel
    APPLIED CRYSTALLOGRAPHY XX, 2007, 130 : 69 - +
  • [26] Lithium intercalation/deintercalation in transition metal oxides investigated by X-ray photoelectron spectroscopy
    Dupin, JC
    Gonbeau, D
    Martin-Litas, I
    Vinatier, P
    Levasseur, A
    JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 2001, 120 (1-3) : 55 - 65
  • [27] EFFECT OF MAGNETIC AND TEMPERATURE FIELDS ON ELECTRICAL PROPERTIES OF LITHIUM-MANGANESE FERRITES
    SHAMANOV, MA
    KIRICHOK, PP
    KAZVINI, ND
    BONDAREV, DE
    DOKLADY AKADEMII NAUK SSSR, 1975, 221 (05): : 1079 - 1081
  • [28] Atomic-Scale Tracking of a Phase Transition from Spinel to Rocksalt in Lithium Manganese Oxide
    Gao, Peng
    Ishikawa, Ryo
    Tochigi, Eita
    Kumamoto, Akihito
    Shibata, Naoya
    Ikuhara, Yuichi
    CHEMISTRY OF MATERIALS, 2017, 29 (03) : 1006 - 1013
  • [29] Phase transitions of lithium during its intercalation and deintercalation on electrodes composed of intermetallide compounds of aluminum
    Ozeryanskaya, VV
    Guterman, VE
    Grigor'ev, VP
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 1999, 35 (02) : 256 - 257
  • [30] Numerical Simulation of Stress Evolution in Lithium Manganese Dioxide Particles due to Coupled Phase Transition and Intercalation
    Park, Jonghyun
    Lu, Wei
    Sastry, Ann Marie
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (02) : A201 - A206