End-to-End Differentiable Learning of Protein Structure

被引:226
|
作者
AlQuraishi, Mohammed [1 ,2 ]
机构
[1] Harvard Med Sch, Lab Syst Pharmacol, Boston, MA 02115 USA
[2] Harvard Med Sch, Dept Syst Biol, Boston, MA 02115 USA
关键词
STRUCTURE PREDICTION;
D O I
10.1016/j.cels.2019.03.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Predicting protein structure from sequence is a central challenge of biochemistry. Co-evolution methods show promise, but an explicit sequence-to-structure map remains elusive. Advances in deep learning that replace complex, human-designed pipelines with differentiable models optimized end to end suggest the potential benefits of similarly reformulating structure prediction. Here, we introduce an end-to-end differentiable model for protein structure learning. The model couples local and global protein structure via geometric units that optimize global geometry without violating local covalent chemistry. We test our model using two challenging tasks: predicting novel folds without co-evolutionary data and predicting known folds without structural templates. In the first task, the model achieves state-of-the-art accuracy, and in the second, it comes within 1-2 A degrees; competing methods using co-evolution and experimental templates have been refined over many years, and it is likely that the differentiable approach has substantial room for further improvement, with applications ranging from drug discovery to protein design.
引用
收藏
页码:292 / +
页数:13
相关论文
共 50 条
  • [21] End-to-End Learning Framework for Space Optical Communications in Non-Differentiable Poisson Channel
    Elfikky, Abdelrahman
    Soltani, Morteza
    Rezki, Zouheir
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2024, 13 (08) : 2090 - 2094
  • [22] End-to-end automatic lens design with a differentiable diffraction model
    Zhang, Wenguan
    Ren, Zheng
    Hou, Jingwen
    Hen, Shiqi
    Feng, Huajun
    Li, Q., I
    Xu, Zhihai
    Chen, Yueting
    OPTICS EXPRESS, 2024, 32 (25): : 44328 - 44345
  • [23] End-to-End Complex Lens Design with Differentiable Ray Tracing
    Sun, Qilin
    Wang, Congli
    Fu, Qiang
    Dun, Xiong
    Heidrich, Wolfgang
    ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (04):
  • [24] ∂PV: An End-to-End Differentiable Solar-Cell Simulator
    Mann, Sean
    Fadel, Eric
    Schoenholz, Samuel S.
    Cubuk, Ekin D.
    Johnson, Steven G.
    Romano, Giuseppe
    Mann, Sean (seanmann@mit.edu); Romano, Giuseppe (romanog@mit.edu), 2021, arXiv
  • [25] End-to-End Incremental Learning
    Castro, Francisco M.
    Marin-Jimenez, Manuel J.
    Guil, Nicolas
    Schmid, Cordelia
    Alahari, Karteek
    COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 : 241 - 257
  • [26] Exploring sequence-to-sequence learning methods for end-to-end, complete protein structure prediction
    King, Jonathan
    Francoeur, Paul
    Koes, David
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [27] End-to-End Deep Learning for Long-haul Fiber Transmission Using Differentiable Surrogate Channel
    Niu, Zekun
    Yang, Hang
    Zhao, Haochen
    Dai, Chenhao
    Hu, Weisheng
    Yi, Lilin
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2022, 40 (09) : 2807 - 2822
  • [28] partial derivativePV: An end-to-end differentiable solar-cell simulator
    Mann, Sean
    Fadel, Eric
    Schoenholz, Samuel S.
    Cubuk, Ekin D.
    Johnson, Steven G.
    Romano, Giuseppe
    COMPUTER PHYSICS COMMUNICATIONS, 2022, 272
  • [29] Toward the end-to-end optimization of particle physics instruments with differentiable programming
    Dorigo T.
    Giammanco A.
    Vischia P.
    Aehle M.
    Bawaj M.
    Boldyrev A.
    de Castro Manzano P.
    Derkach D.
    Donini J.
    Edelen A.
    Fanzago F.
    Gauger N.R.
    Glaser C.
    Baydin A.G.
    Heinrich L.
    Keidel R.
    Kieseler J.
    Krause C.
    Lagrange M.
    Lamparth M.
    Layer L.
    Maier G.
    Nardi F.
    Pettersen H.E.S.
    Ramos A.
    Ratnikov F.
    Röhrich D.
    de Austri R.R.
    del Árbol P.M.R.
    Savchenko O.
    Simpson N.
    Strong G.C.
    Taliercio A.
    Tosi M.
    Ustyuzhanin A.
    Zaraket H.
    Reviews in Physics, 2023, 10
  • [30] Expanding End-to-End Question Answering on Differentiable Knowledge Graphs with Intersection
    Sen, Priyanka
    Saffari, Amir
    Oliya, Armin
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 8805 - 8812