Joint Parametric and Non-parametric Curve Evolution for Medical Image Segmentation

被引:0
|
作者
Farzinfar, Mahshid [1 ]
Xue, Zhong [2 ,3 ]
Teoh, Eam Khwang [1 ]
机构
[1] Nanyang Technol Univ, Sch EEE, Singapore 639798, Singapore
[2] Methodist Hosp Res Inst, Weill Cornell Med Coll, Houston, TX 77030 USA
[3] Methodist Hosp, Dept Radiol, Houston, TX 77030 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new joint parametric and nonparametric curve evolution algorithm of the level set functions for medical image segmentation. Traditional level set algorithms employ non-parametric curve evolution for object matching. Although matching image boundaries accurately, they often suffer from local minima and generate incorrect segmentation of object shapes, especially for images with noise, occlusion and low contrast. On the other hand, statistical model-based segmentation methods allow parametric object shape variations subject to some shape prior constraints, and they are more robust in dealing with noise and low contrast. In this paper, we combine the advantages of both of these methods and jointly use parametric and non-parametric curve evolution in object matching. Our new joint curve evolution algorithm is as robust as and at the same time, yields more accurate segmentation results than the parametric methods using shape prior information. Comparative results on segmenting ventricle frontal horn and putamen shapes in MR brain images confirm both robustness and accuracy of the proposed joint curve evolution algorithm.
引用
收藏
页码:167 / +
页数:3
相关论文
共 50 条
  • [41] Non-parametric Econometrics
    Leong, Chee Kian
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2012, 175 : 1072 - 1072
  • [42] The fusion of parametric and non-parametric hypothesis tests
    Singer, PF
    [J]. FUSION 2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE OF INFORMATION FUSION, VOLS 1 AND 2, 2003, : 780 - 784
  • [43] Non-Parametric Parametricity
    Neis, Georg
    Dreyer, Derek
    Rossberg, Andreas
    [J]. ACM SIGPLAN NOTICES, 2009, 44 (8-9) : 135 - 148
  • [44] Parametric and non-parametric methods for linear extraction
    Bascle, B
    Gao, X
    Ramesh, V
    [J]. STATISTICAL METHODS IN VIDEO PROCESSING, 2004, 3247 : 175 - 186
  • [45] Parametric and non-parametric unsupervised cluster analysis
    Roberts, SJ
    [J]. PATTERN RECOGNITION, 1997, 30 (02) : 261 - 272
  • [46] Non-Parametric Parametricity
    Nei, Georg
    Dreyer, Derek
    Rossberg, Andreas
    [J]. ICFP'09: PROCEEDINGS OF THE 2009 ACM SIGPLAN INTERNATIONAL CONFERENCE ON FUNCTIONAL PROGRAMMING, 2009, : 135 - 148
  • [47] Covariate-adjusted non-parametric survival curve estimation
    Jiang, Honghua
    Symanowski, James
    Qu, Yongming
    Ni, Xiao
    Wang, Yanping
    [J]. STATISTICS IN MEDICINE, 2011, 30 (11) : 1243 - 1253
  • [48] PARAMETRIC HYPOTHESES TESTING WITH NON-PARAMETRIC TESTS
    TYURIN, YN
    [J]. THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1970, 15 (04): : 722 - &
  • [49] A note on combining parametric and non-parametric regression
    Rahman, M
    Gokhale, DV
    Ullah, A
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (02) : 519 - 529
  • [50] Non-parametric parametricity
    Neis, Georg
    Dreyer, Derek
    Rossberg, Andreas
    [J]. JOURNAL OF FUNCTIONAL PROGRAMMING, 2011, 21 : 497 - 562