A Broadband Bistable Piezoelectric Energy Harvester With Nonlinear High-Power Extraction

被引:60
|
作者
Singh, Kanishka Aman [1 ]
Kumar, Ratnesh [1 ]
Weber, Robert J. [1 ]
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Energy harvesting; nonlinear systems; piezoelectric transducer; switched circuits; LOW-RF-BAND; IN-SITU; GENERATOR; SENSOR; CIRCUIT;
D O I
10.1109/TPEL.2015.2394392
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a nonlinear vibration energy harvester, which combines a nonlinear bistable broadband piezoelectric cantilever used to transduce ambient vibration energy, with synchronized capture for efficient harvesting over broadband sources. An accurate model of the bistable transducer, that augments the Butterworth van Dyke model to capture the external magnetic force added as a bias to the external vibrations, is presented. Its validity has been demonstrated through physical implementation and experimental validation against simulation of the mathematical model. For efficient extraction of the transduced energy, nonlinear extraction circuits, namely synchronous charge extraction (SCE) and parallel synchronized switch harvesting on inductor (SSHI), are employed. The switching in these circuits is implemented using a fully self-propelled, low-power electronic breaker circuit, capable of detecting extrema in the waveform to perform switching. Both simulated and experimental power outputs from the bistable harvester have been presented, with the SCE and parallel-SSHI providing average outputs with more than 100-fold increase over the harvested power reported in the literature for the same input, and further, even more significant gains are observed for broadband excitations.
引用
收藏
页码:6763 / 6774
页数:12
相关论文
共 50 条
  • [31] Nonlinear Piezoelectric Energy Harvester: Experimental Output Power Mapping
    Burda, Ioan
    [J]. VIBRATION, 2022, 5 (03): : 483 - 496
  • [32] A bistable piezoelectric energy harvester for broadening frequency bandwidth
    Song, Jie
    Shan, Guansong
    Wang, Dong F.
    Fu, Yupeng
    Gan, Weican
    Yang, Xu
    Maeda, Ryutaro
    [J]. 2018 13TH ANNUAL IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS 2018), 2018, : 499 - 502
  • [33] Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester
    Wu, Hao
    Tang, Lihua
    Yang, Yaowen
    Soh, Chee Kiong
    [J]. JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2014, 25 (14) : 1875 - 1889
  • [34] Coherence resonance of nonlinear piezoelectric energy harvester under broadband random excitation
    Li Hai-Tao
    Qin Wei-Yang
    [J]. ACTA PHYSICA SINICA, 2014, 63 (12)
  • [35] Optimized multi-frequency nonlinear broadband piezoelectric energy harvester designs
    Elgamal, Mohamed A.
    Elgamal, Hassan
    Kouritem, Sallam A.
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01):
  • [36] Piezoelectric materials for bistable energy harvester: A comparative study
    Shah, Vishrut
    Kumar, Rajeev
    Talha, Mohammad
    Vaish, Rahul
    [J]. INTEGRATED FERROELECTRICS, 2016, 176 (01) : 73 - 84
  • [37] Numerical and experimental study of bistable piezoelectric energy harvester
    Shah, Vishrut
    Kumar, Rajeev
    Talha, Mohammad
    Twiefel, Jens
    [J]. INTEGRATED FERROELECTRICS, 2018, 192 (01) : 38 - 56
  • [38] A review of broadband piezoelectric vibration energy harvester
    宽频压电振动俘能器的研究现状综述
    [J]. Xie, Tao, 2018, Chinese Vibration Engineering Society (37):
  • [39] Broadband design of hybrid piezoelectric energy harvester
    Tan, Ting
    Yan, Zhimiao
    Huang, Wenhu
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017, 131 : 516 - 526
  • [40] A Broadband Frequency Piezoelectric Vibration Energy Harvester
    Ma Hua-An
    Liu Jing-Quan
    Tang Gang
    Yang Chun-Sheng
    Li Yi-Gui
    He Dan-Nong
    [J]. MEMS/NEMS NANO TECHNOLOGY, 2011, 483 : 626 - +