Stability Diagram of Janus and Core-Shell Configurations in Bimetallic Nanowires

被引:8
|
作者
Maras, Emile [1 ,2 ]
Berthier, Fabienne [1 ,3 ]
Legrand, Bernard [4 ]
机构
[1] Univ Paris Saclay, Univ Paris 11, ICMMO, UMR 8182,SP2M, F-91405 Orsay, France
[2] Aalto Univ, Sch Sci, Dept Appl Phys, COMP Ctr Excellence, FI-00076 Espoo, Finland
[3] CNRS, UMR 8182, F-91405 Orsay, France
[4] Univ Paris Saclay, Serv Rech Met Phys, DEN, CEA, F-91191 Gif Sur Yvette, France
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2016年 / 120卷 / 39期
关键词
ALLOY NANOPARTICLES; STRUCTURAL-PROPERTIES; SEGREGATION PROFILES; CHEMICAL-ORDER; PHASE-DIAGRAMS; NANOALLOYS; TRANSITION; SURFACE; SIZE;
D O I
10.1021/acs.jpcc.6b06707
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alloy nanoparticles can exhibit several different structures due to segregation and phase separation. In the case of an alloy with a tendency to phase separate, the core-shell (CS) configuration and the so-called "Janus" one are the most commonly observed configurations. For a given alloy, the relative stability of these configurations depends on the size of the particle, the temperature, and the chemical composition. Using canonical Monte Carlo simulation on a rigid lattice, we study the stability diagram of bimetallic nanowires and its evolution as a function of the length of nanowires. We consider successively alloys with a weak and strong superficial segregation tendency. The simplicity of this 1D system allows us to extract the pertinent energetic parameters that control the relative stabilities. Furthermore, we find that the critical temperature decreases when increasing the size of the system. Phase diagrams and stability diagrams are compared and discussed in terms of the behavior of an assembly in mutual equilibrium with each other or of an assembly of isolated nanoparticles.
引用
收藏
页码:22670 / 22680
页数:11
相关论文
共 50 条
  • [31] Band structure of core-shell semiconductor nanowires
    Pistol, M. -E.
    Pryor, C. E.
    PHYSICAL REVIEW B, 2008, 78 (11):
  • [32] Thermal conductivity reduction in core-shell nanowires
    Hu, Ming
    Zhang, Xiaoliang
    Giapis, Konstantinos P.
    Poulikakos, Dimos
    PHYSICAL REVIEW B, 2011, 84 (08):
  • [33] Radial modulation doping in core-shell nanowires
    Dillen, David C.
    Kim, Kyounghwan
    Liu, En-Shao
    Tutuc, Emanuel
    NATURE NANOTECHNOLOGY, 2014, 9 (02) : 116 - 120
  • [34] Layered structure in core-shell silicon nanowires
    Pham Van Tuan
    Chu Anh Tuan
    Iran Thanh Thuy
    Vu Binh Nam
    Pham Toan Thang
    Pham Hong Duong
    Pham Thanh Huy
    JOURNAL OF LUMINESCENCE, 2014, 154 : 46 - 50
  • [35] Core-shell magnetic nanowires fabrication and characterization
    Kalska-Szostko, B.
    Kiekotka, U.
    Satula, D.
    APPLIED SURFACE SCIENCE, 2017, 396 : 1855 - 1859
  • [36] Si-SiC core-shell nanowires
    Ollivier, M.
    Latu-Romain, L.
    Martin, M.
    David, S.
    Mantoux, A.
    Bano, E.
    Souliere, V.
    Ferro, G.
    Baron, T.
    JOURNAL OF CRYSTAL GROWTH, 2013, 363 : 158 - 163
  • [37] Radial modulation doping in core-shell nanowires
    Dillen D.C.
    Kim K.
    Liu E.-S.
    Tutuc E.
    Nat. Nanotechnol., 2 (116-120): : 116 - 120
  • [38] Nonlocal Dielectric Effects in Core-Shell Nanowires
    McMahon, Jeffrey M.
    Gray, Stephen K.
    Schatz, George C.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (38): : 15903 - 15908
  • [39] Majorana states in prismatic core-shell nanowires
    Manolescu, Andrei
    Sitek, Anna
    Osca, Javier
    Serra, Llorenc
    Gudmundsson, Vidar
    Stanescu, Tudor Dan
    PHYSICAL REVIEW B, 2017, 96 (12)
  • [40] Complementary resistive switching in core-shell nanowires
    Vasisth, Shangradhanva E.
    Nino, Juan C.
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (15)