Stability Diagram of Janus and Core-Shell Configurations in Bimetallic Nanowires

被引:8
|
作者
Maras, Emile [1 ,2 ]
Berthier, Fabienne [1 ,3 ]
Legrand, Bernard [4 ]
机构
[1] Univ Paris Saclay, Univ Paris 11, ICMMO, UMR 8182,SP2M, F-91405 Orsay, France
[2] Aalto Univ, Sch Sci, Dept Appl Phys, COMP Ctr Excellence, FI-00076 Espoo, Finland
[3] CNRS, UMR 8182, F-91405 Orsay, France
[4] Univ Paris Saclay, Serv Rech Met Phys, DEN, CEA, F-91191 Gif Sur Yvette, France
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2016年 / 120卷 / 39期
关键词
ALLOY NANOPARTICLES; STRUCTURAL-PROPERTIES; SEGREGATION PROFILES; CHEMICAL-ORDER; PHASE-DIAGRAMS; NANOALLOYS; TRANSITION; SURFACE; SIZE;
D O I
10.1021/acs.jpcc.6b06707
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alloy nanoparticles can exhibit several different structures due to segregation and phase separation. In the case of an alloy with a tendency to phase separate, the core-shell (CS) configuration and the so-called "Janus" one are the most commonly observed configurations. For a given alloy, the relative stability of these configurations depends on the size of the particle, the temperature, and the chemical composition. Using canonical Monte Carlo simulation on a rigid lattice, we study the stability diagram of bimetallic nanowires and its evolution as a function of the length of nanowires. We consider successively alloys with a weak and strong superficial segregation tendency. The simplicity of this 1D system allows us to extract the pertinent energetic parameters that control the relative stabilities. Furthermore, we find that the critical temperature decreases when increasing the size of the system. Phase diagrams and stability diagrams are compared and discussed in terms of the behavior of an assembly in mutual equilibrium with each other or of an assembly of isolated nanoparticles.
引用
收藏
页码:22670 / 22680
页数:11
相关论文
共 50 条
  • [1] Asymmetrical reorientation of bimetallic core-shell nanowires
    Ma, F.
    Ma, S. L.
    Xu, K. W.
    Chu, Paul K.
    NANOTECHNOLOGY, 2009, 20 (04)
  • [2] Transition from core-shell to Janus chemical configuration for bimetallic nanoparticles
    Langlois, Cyril
    Li, Z. L.
    Yuan, Jun
    Alloyeau, Damien
    Nelayah, Jaysen
    Bochicchio, Davide
    Ferrando, Riccardo
    Ricolleau, Christian
    NANOSCALE, 2012, 4 (11) : 3381 - 3388
  • [3] Stability of core-shell nanowires in selected model solutions
    Kalska-Szostko, B.
    Wykowska, U.
    Basa, A.
    Zambrzycka, E.
    APPLIED SURFACE SCIENCE, 2015, 332 : 599 - 605
  • [4] Preparation and characterization of copper/silver bimetallic nanowires with core-shell structure
    Zhao, Jun
    Zhang, Dongming
    Zhang, Xiuli
    SURFACE AND INTERFACE ANALYSIS, 2015, 47 (04) : 529 - 534
  • [5] Formation of bimetallic core-shell nanowires along vortices in superfluid He nanodroplets
    Thaler, Philipp
    Volk, Alexander
    Lackner, Florian
    Steurer, Johannes
    Knez, Daniel
    Grogger, Werner
    Hofer, Ferdinand
    Ernst, Wolfgang E.
    PHYSICAL REVIEW B, 2014, 90 (15):
  • [6] In As/GaAs Core-Shell Nanowires
    Popovitz-Biro, Ronit
    Kretinin, Andrey
    Von Huth, Palle
    Shtrikman, Hadas
    CRYSTAL GROWTH & DESIGN, 2011, 11 (09) : 3858 - 3865
  • [7] A comparative study on melting of core-shell and Janus Cu-Ag bimetallic nanoparticles
    Li, Siqi
    Qi, Weihong
    Peng, Hongcheng
    Wu, Jizheng
    COMPUTATIONAL MATERIALS SCIENCE, 2015, 99 : 125 - 132
  • [8] Properties of Bimetallic Core-Shell Nanoclusters
    Park, Y. H.
    Hijazi, I.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, PVP 2012, VOL 2, 2012, : 269 - 272
  • [9] Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate
    Lou, Yaoyin
    Huang, Xiaoyang Jerry
    Zhao, Kuang-Min
    Douthwaite, Mark J.
    Fan, Tingting
    Lu, Fa
    Akdim, Ouardia
    Tian, Na
    Sun, Shigang
    Hutchings, Graham J.
    CHINESE CHEMICAL LETTERS, 2025, 36 (03)
  • [10] Photovoltaics with Piezoelectric Core-Shell Nanowires
    Boxberg, Fredrik
    Sondergaard, Niels
    Xu, H. Q.
    NANO LETTERS, 2010, 10 (04) : 1108 - 1112