The endomorphism monoid of a free trioid of rank 1

被引:9
|
作者
Zhuchok, Yurii V. [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Mech & Math, Volodymyrska 60, UA-01601 Kiev, Ukraine
关键词
free trioid; endomorphism monoid; isomorphism; TRIALGEBRAS;
D O I
10.1007/s00012-016-0392-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe all endomorphisms of a free trioid of rank 1 and construct a semigroup which is isomorphic to the endomorphism monoid of such free trioid. Also, we give an abstract characteristic for the endomorphism monoid of a free trioid of rank 1 and prove that free trioids are determined by their endomorphism monoids.
引用
收藏
页码:355 / 366
页数:12
相关论文
共 50 条
  • [31] GREEN RELATIONS ON THE STRONG ENDOMORPHISM MONOID OF A GRAPH
    LI, WM
    SEMIGROUP FORUM, 1993, 47 (02) : 209 - 214
  • [32] Idempotent Generation in the Endomorphism Monoid of a Uniform Partition
    Dolinka, Igor
    East, James
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (12) : 5179 - 5198
  • [33] The endomorphism monoid of (Pn)over-bar
    Hou, Hailong
    Luo, Yanfeng
    Cheng, Zhimi
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (05) : 1173 - 1185
  • [34] The Efficiency of the Semi-Direct Products of Free Abelian Monoid with Rank n by the Infinite Cyclic Monoid
    Ates, Firat
    Karpuz, Eylem G.
    Cevik, A. Sinan
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C, 2011, 1389
  • [35] Certain verbal congruences on the free trioid
    Zhuchok, Anatolii, V
    ALGEBRA AND DISCRETE MATHEMATICS, 2024, 37 (02): : 287 - 303
  • [36] Quasi-endomorphism rings of strongly indecomposable torsion-free Abelian groups of rank 4 with pseudosocles of rank 1
    Cherednikova A.V.
    Journal of Mathematical Sciences, 2014, 197 (5) : 703 - 707
  • [37] Generalized lexicographic product of graphs and strong endomorphism monoid
    Liu, XS
    Chen, XE
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2000, 25 (2C): : 173 - 177
  • [38] A counterexample to the reconstruction of ω-categorical structures from their endomorphism monoid
    Manuel Bodirsky
    David Evans
    Michael Kompatscher
    Michael Pinsker
    Israel Journal of Mathematics, 2018, 224 : 57 - 82
  • [39] ENDOMORPHISM RINGS OF RANK 2 TORSION-FREE ABELIAN GROUPS
    PARR, JT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (07): : 1048 - &