Ontology Driven Machine learning Approach for Disease Name Extraction from Twitter Messages

被引:0
|
作者
Magumba, Mark Abraham [1 ]
Nabende, Peter [1 ]
Mwebaze, Earnest [1 ]
机构
[1] Makerere Univ, Coll Comp & Informat Sci, Dept Informat Syst, POB 7062, Kampala, Uganda
关键词
named entity recognition; knowledge engineering; ontology; epidemiology;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Twitter and social media as a whole has great potential as a source of disease surveillance data however the general messiness of tweets presents several challenges for standard information extraction methods. Current methods for disease surveillance on twitter rely on inflexible keyword based approaches that require messages to be pre-filtered on the basis of a disease name which is supplied a priori and are not capable of detecting new ailments. In this paper we present an ontology based machine learning approach to extract disease names and expressions describing ailments from tweets which may be employed as part of a larger general purpose system for automated disease incidence monitoring. We also propose a simple methodology for automatic detection and correction of errors.
引用
收藏
页码:68 / 73
页数:6
相关论文
共 50 条
  • [21] Male and female politicians on Twitter: A machine learning approach
    Beltran, Javier
    Gallego, Aina
    Huidobro, Alba
    Romero, Enrique
    Padro, Lluis
    [J]. EUROPEAN JOURNAL OF POLITICAL RESEARCH, 2021, 60 (01) : 239 - 251
  • [22] A machine learning approach for socialbot targets detection on Twitter
    Abulaish, Muhammad
    Fazil, Mohd
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (03) : 4115 - 4133
  • [23] Creating a metamodel based on machine learning to identify the sentiment of vaccine and disease-related messages in Twitter: the MAVIS study
    Rodriguez-Gonzalez, Alejandro
    Manuel Tunas, Juan
    Fernandez Peces-Barba, Diego
    Menasalvas-Ruiz, Ernestina
    Jaramillo, Almudena
    Cotarelo, Manuel
    Conejo, Antonio
    Arce, Amalia
    Gil, Angel
    [J]. 2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020), 2020, : 245 - 250
  • [24] A machine learning approach to information extraction
    Téllez-Valero, A
    Montes-y-Gómez, M
    Villaseñor-Pineda, L
    [J]. COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2005, 3406 : 539 - 547
  • [25] An ontology-based approach for preprocessing in machine learning
    Soto, Patricia Centeno
    Ramzy, Nour
    Ocker, Felix
    Vogel-Heuser, Birgit
    [J]. INES 2021: 2021 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS, 2021,
  • [26] TOWARDS A NEW ONTOLOGY-DRIVEN APPROACH FOR THE EXTRACTION OF PARAMETERS IN LEARNING OBJECT QUALITY EVALUATION TASKS
    Medina, Dianelys
    Hermida, Jesus M.
    Montoyo, Andres
    [J]. SISTEMAS E TECHNOLOGIAS DE INFORMACAO: ACTAS DA 4A CONFERENCIA IBERICA DE SISTEMAS E TECNOLOGIAS DE LA INFORMACAO, 2009, : 509 - +
  • [27] Cardinality Extraction from Text for Ontology Learning
    Jain, Monika
    Mirza, Paramita
    Mutharaju, Raghava
    [J]. PROCEEDINGS OF THE 7TH ACM IKDD CODS AND 25TH COMAD (CODS-COMAD 2020), 2020, : 354 - 354
  • [28] Machine Learning Approach for COVID-19 Detection on Twitter
    Amin, Samina
    Uddin, M. Irfan
    Al-Baity, Heyam H.
    Zeb, M. Ali
    Khan, M. Abrar
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (02): : 2231 - 2247
  • [29] Exploring Eating Disorder Topics on Twitter: Machine Learning Approach
    Zhou, Sicheng
    Zhao, Yunpeng
    Bian, Jiang
    Haynos, Ann F.
    Zhang, Rui
    [J]. JMIR MEDICAL INFORMATICS, 2020, 8 (10)
  • [30] Predicting Trends in the Twitter Social Network: A Machine Learning Approach
    Das, Anubrata
    Roy, Moumita
    Dutta, Soumi
    Ghosh, Saptarshi
    Das, Asit Kumar
    [J]. SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, SEMCCO 2014, 2015, 8947 : 570 - 581