Transport coefficients in high-temperature ionized air flows with electronic excitation

被引:8
|
作者
Istomin, V. A. [1 ]
Oblapenko, G. P. [1 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
基金
俄罗斯科学基金会;
关键词
NITROGEN; OXYGEN; MIXTURES; PLASMAS; ARGON;
D O I
10.1063/1.5017167
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N-2/N-2(+)/N/N+O2/O-2(+)/O/O+/NO/NO+/e(-), taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K. Published by AIP Publishing.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Electronic excitation and isentropic coefficients of high temperature planetary atmosphere plasmas
    Colonna, Gianpiero
    D'Angola, Antonio
    Capitelli, Mario
    [J]. PHYSICS OF PLASMAS, 2012, 19 (07)
  • [22] ELECTRON-TRANSPORT PROPERTIES IN HIGH-TEMPERATURE AIR
    DEVOTO, RS
    [J]. PHYSICS OF FLUIDS, 1976, 19 (01) : 22 - 24
  • [23] Transport properties of high-temperature air in a magnetic field
    Bruno, D.
    Capitelli, M.
    Catalfamo, C.
    Giordano, D.
    [J]. PHYSICS OF PLASMAS, 2011, 18 (01)
  • [24] Calculations of iron diffusion coefficients - High-temperature oxidation in air in a cylindrical geometry
    Jurasz, Z
    Danielewski, M
    Filipek, R
    [J]. DIFFUSIONS IN MATERIALS: DIMAT2000, PTS 1 & 2, 2001, 194-1 : 1719 - 1724
  • [25] TRANSPORT-COEFFICIENTS OF AR-H2 HIGH-TEMPERATURE MIXTURES
    CAPITELLI, M
    GORSE, C
    FAUCHAIS, P
    [J]. JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1976, 73 (7-8) : 755 - 759
  • [26] Ionization and recombination rates of atomic oxygen in high-temperature air plasma flows
    Bourdon, A
    Teresiak, Y
    Vervisch, P
    [J]. PHYSICAL REVIEW E, 1998, 57 (04): : 4684 - 4692
  • [27] ELECTRONIC TRANSPORT-PROPERTIES OF ZRTIO4 AT HIGH-TEMPERATURE
    YAMAGUCHI, S
    KOBAYASHI, K
    IGUCHI, Y
    YAMADA, N
    KATO, T
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1994, 33 (9B): : 5471 - 5476
  • [28] High-temperature effects in hypersonic flows
    Prabhu, DK
    [J]. SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 1995, 20 : 781 - 814
  • [29] Computation of high-temperature nonequilibrium flows
    Fruhauf, HH
    [J]. MOLECULAR PHYSICS AND HYPERSONIC FLOWS, 1996, 482 : 645 - 663
  • [30] HIGH-TEMPERATURE AIR PREHEATING
    HRYNISZA.W
    [J]. JOURNAL OF THE INSTITUTE OF FUEL, 1967, 40 (317): : 275 - &