Modelling the Regulation of Thermal Adaptation in Candida albicans, a Major Fungal Pathogen of Humans

被引:46
|
作者
Leach, Michelle D. [1 ]
Tyc, Katarzyna M. [2 ]
Brown, Alistair J. P. [1 ]
Klipp, Edda [2 ]
机构
[1] Univ Aberdeen, Sch Med Sci, Aberdeen, Scotland
[2] Humboldt Univ, D-10099 Berlin, Germany
来源
PLOS ONE | 2012年 / 7卷 / 03期
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
HEAT-SHOCK RESPONSE; DNA-BINDING ACTIVITY; TRANSCRIPTION FACTOR; PROTEIN-SYNTHESIS; GENE-EXPRESSION; ATTRIBUTABLE MORTALITY; PERFECT ADAPTATION; STRESS RESISTANCE; IN-VIVO; HSP90;
D O I
10.1371/journal.pone.0032467
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Eukaryotic cells have evolved mechanisms to sense and adapt to dynamic environmental changes. Adaptation to thermal insults, in particular, is essential for their survival. The major fungal pathogen of humans, Candida albicans, is obligately associated with warm-blooded animals and hence occupies thermally buffered niches. Yet during its evolution in the host it has retained a bona fide heat shock response whilst other stress responses have diverged significantly. Furthermore the heat shock response is essential for the virulence of C. albicans. With a view to understanding the relevance of this response to infection we have explored the dynamic regulation of thermal adaptation using an integrative systems biology approach. Our mathematical model of thermal regulation, which has been validated experimentally in C. albicans, describes the dynamic autoregulation of the heat shock transcription factor Hsf1 and the essential chaperone protein Hsp90. We have used this model to show that the thermal adaptation system displays perfect adaptation, that it retains a transient molecular memory, and that Hsf1 is activated during thermal transitions that mimic fever. In addition to providing explanations for the evolutionary conservation of the heat shock response in this pathogen and the relevant of this response to infection, our model provides a platform for the analysis of thermal adaptation in other eukaryotic cells.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Bypassing Pathogen-Induced Inflammasome Activation for the Regulation of Interleukin-1β Production by the Fungal Pathogen Candida albicans
    van de Veerdonk, Frank L.
    Joosten, Leo A. B.
    Devesa, Isabel
    Mora-Montes, Hector M.
    Kanneganti, Thirumala-Devi
    Dinarello, Charles A.
    van der Meer, Jos W. M.
    Gow, Neil A. R.
    Kullberg, Bart Jan
    Netea, Mihai G.
    [J]. JOURNAL OF INFECTIOUS DISEASES, 2009, 199 (07): : 1087 - 1096
  • [32] A conserved regulator controls asexual sporulation in the fungal pathogen Candida albicans
    Arturo Hernández-Cervantes
    Sadri Znaidi
    Lasse van Wijlick
    Iryna Denega
    Virginia Basso
    Jeanne Ropars
    Natacha Sertour
    Derek Sullivan
    Gary Moran
    Louise Basmaciyan
    Fabienne Bon
    Frédéric Dalle
    Marie-Elisabeth Bougnoux
    Teun Boekhout
    Ying Yang
    Zongwei Li
    Sophie Bachellier-Bassi
    Christophe d’Enfert
    [J]. Nature Communications, 11
  • [33] A conserved regulator controls asexual sporulation in the fungal pathogen Candida albicans
    Hernandez-Cervantes, Arturo
    Znaidi, Sadri
    van Wijlick, Lasse
    Denega, Iryna
    Basso, Virginia
    Ropars, Jeanne
    Sertour, Natacha
    Sullivan, Derek
    Moran, Gary
    Basmaciyan, Louise
    Bon, Fabienne
    Dalle, Frederic
    Bougnoux, Marie-Elisabeth
    Boekhout, Teun
    Yang, Ying
    Li, Zongwei
    Bachellier-Bassi, Sophie
    D'Enfert, Christophe
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [34] Phagosomal Neutralization by the Fungal Pathogen Candida albicans Induces Macrophage Pyroptosis
    Vylkova, Slavena
    Lorenz, Michael C.
    [J]. INFECTION AND IMMUNITY, 2017, 85 (02)
  • [35] A lacZ reporter with high activity in the human fungal pathogen Candida albicans
    Klimova, Natalia
    Chu, Siwei
    Turcotte, Bernard
    [J]. FEMS YEAST RESEARCH, 2021, 21 (02)
  • [36] The role of manganese in morphogenesis and pathogenesis of the opportunistic fungal pathogen Candida albicans
    Wildeman, Asia S. S.
    Patel, Naisargi K. K.
    Cormack, Brendan p P.
    Culotta, Valeria C. C.
    [J]. PLOS PATHOGENS, 2023, 19 (06)
  • [37] Cancer drugs inhibit morphogenesis in the human fungal pathogen, Candida albicans
    Routh, Madhushree M.
    Chauhan, Nitin M.
    Karuppayil, S. Mohan
    [J]. BRAZILIAN JOURNAL OF MICROBIOLOGY, 2013, 44 (03) : 855 - 859
  • [38] The development of fluconazole resistance in Candida albicans – an example of microevolution of a fungal pathogen
    Joachim Morschhäuser
    [J]. Journal of Microbiology, 2016, 54 : 192 - 201
  • [39] Nanoscale adhesion forces between the fungal pathogen Candida albicans and macrophages
    El-Kirat-Chatel, Sofiane
    Dufrene, Yves F.
    [J]. NANOSCALE HORIZONS, 2016, 1 (01) : 69 - 74
  • [40] Comparative Phenotypic Analysis of the Major Fungal Pathogens Candida parapsilosis and Candida albicans
    Holland, Linda M.
    Schroeder, Markus S.
    Turner, Siobhan A.
    Taff, Heather
    Andes, David
    Grozer, Zsuzsanna
    Gacser, Attila
    Ames, Lauren
    Haynes, Ken
    Higgins, Desmond G.
    Butler, Geraldine
    [J]. PLOS PATHOGENS, 2014, 10 (09)