Energy absorption properties of composite tubes with hexagonal and re-entrant honeycomb fillers

被引:49
|
作者
Zhang, Xue Gang [1 ]
Jiang, Wei [1 ]
Zhang, Yi [1 ]
Luo, Chen [1 ]
Zhang, Xiang Yu [1 ]
Han, Dong [1 ]
Hao, Jian [1 ]
Teng, Xing Chi [1 ]
Xie, Yi Min [2 ]
Ren, Xin [1 ]
机构
[1] Nanjing Tech Univ, Coll Civil Engn, Ctr Innovat Struct, Nanjing 211816, Jiangsu, Peoples R China
[2] RMIT Univ, Ctr Innovat Struct & Mat, Sch Engn, Melbourne, Vic 3001, Australia
基金
中国国家自然科学基金;
关键词
Auxetic; Honeycomb; Mechanical metamaterials; Three-point bending; Energy absorption; Multi-objective optimization; BENDING BEHAVIOR; DESIGN;
D O I
10.1016/j.conbuildmat.2022.129298
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Compared to traditional materials, auxetic materials possess superior bending resistance and energy absorption properties due to their special deformation mechanism. To take advantage of these desirable properties, a novel composite tube with auxetic honeycomb filler was proposed in this work. The honeycomb filler of the composite tube was manufactured by 3D printing technology. The bending properties of two kinds of tubes were studied, namely aluminum tube with re-entrant honeycomb filler and aluminum tube with hexagonal honeycomb filler, respectively. The mechanical responses, deformational characteristics, and failure mechanism of the composite tube under three-point bending were studied by experimental and numerical methods. The study showed that the experiment and numerical results match well with each other. In addition, parametric analysis was carried out to examine the effects of filler and aluminum alloy tubes on the bending properties of the composite tube. Finally, kriging model and the non-dominated sorting genetic algorithm (NSGA-II) are used to optimize the design of composite tubes, and the parameter solution with better energy absorption capacity is obtained.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] In-plane energy absorption capacity of a novel locally enhanced re-entrant honeycomb metamaterial
    Ding, Haiping
    Xie, Suchao
    Wang, Hao
    Jing, Kunkun
    Zhang, Jing
    Yan, Hongyu
    Zhang, Fengyi
    He, Guandi
    THIN-WALLED STRUCTURES, 2025, 210
  • [12] Re-Entrant Honeycomb Auxetic Structure with Enhanced Directional Properties
    Mustahsan, Farrukh
    Khan, Sohaib Z.
    Zaidi, Asad A.
    Alahmadi, Yaser H.
    Mahmoud, Essam R., I
    Almohamadi, Hamad
    MATERIALS, 2022, 15 (22)
  • [13] Study on the energy absorption effect and impact resistance of a composite sandwich panel with carbon fiber reinforced re-entrant hexagonal honeycomb core with negative Poisson's ratio
    Liu, Hao
    Li, Dong
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2025, 109
  • [14] Energy absorption of re-entrant honeycombs in tension and compression
    Zhang, Jianjun
    Lu, Guoxing
    ENGINEERING STRUCTURES, 2023, 288
  • [15] Impact Response of Re-Entrant Hierarchical Honeycomb
    Lian, Jinming
    Wang, Zhenqing
    MATERIALS, 2023, 16 (22)
  • [16] Mechanical Properties of Re-Entrant Hybrid Honeycomb Structures for Morphing Wings
    Wang, Yan
    Guo, Yingjie
    Yang, Hui
    BIOMIMETICS, 2024, 9 (09)
  • [17] Effect of fillers on compression loading performance of modified re-entrant honeycomb auxetic sandwich structures
    Faisal, Nadimul Haque
    Scott, Lindsay
    Booth, Findlay
    Duncan, Scott
    McLeod, Abbi
    Droubi, Mohamad Ghazi
    Njuguna, James
    JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2023, 58 (02): : 98 - 117
  • [18] The arrangement patterns optimization of 3D honeycomb and 3D re-entrant honeycomb structures for energy absorption
    Xia, BingChen
    Huang, Xingyuan
    Chang, Lijun
    Zhang, Ruotong
    Liao, Zhikang
    Cai, Zhihua
    MATERIALS TODAY COMMUNICATIONS, 2023, 35
  • [19] Design and Numerical Investigation of the 3D Reinforced Re-entrant Auxetic and Hexagonal Lattice Structures for Energy Absorption Properties
    Bastola, Nabin
    Ma, Jianfeng
    Jahan, Muhammad P.
    MANUFACTURING LETTERS, 2024, 41 : 1100 - 1108
  • [20] Design and numerical investigation of the 3D reinforced re-entrant auxetic and hexagonal lattice structures for energy absorption properties
    Bastola, Nabin
    Ma, Jianfeng
    Jahan, Muhammad P.
    Manufacturing Letters, 2024, 41 : 1100 - 1108