qth-root non-Hermitian Floquet topological insulators

被引:19
|
作者
Zhou, Longwen [1 ]
Bomantara, Raditya Weda [2 ]
Wu, Shenlin [1 ]
机构
[1] Ocean Univ China, Coll Phys & Optoelect Engn, Qingdao 266100, Peoples R China
[2] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW 2006, Australia
来源
SCIPOST PHYSICS | 2022年 / 13卷 / 02期
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
REALIZATION; PHASE;
D O I
10.21468/SciPostPhys.13.2.015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Floquet phases of matter have attracted great attention due to their dynamical and topo-logical nature that are unique to nonequilibrium settings. In this work, we introduce a generic way of taking any integer q th-root of the evolution operator U that describes Flo-quet topological matter. We further apply our qth-rooting procedure to obtain 2nth-and 3nth-root first-and second-order non-Hermitian Floquet topological insulators (FTIs). There, we explicitly demonstrate the presence of multiple edge and corner modes at frac-tional quasienergies +/-(0, 1, ...2n)7r/2n and +/-(0, 1, ..., 3n)7r/3n, whose numbers are highly controllable and capturable by the topological invariants of their parent systems. No-tably, we observe non-Hermiticity induced fractional-quasienergy corner modes and the coexistence of non-Hermitian skin effect with fractional-quasienergy edge states. Our findings thus establish a framework of constructing an intriguing class of topological matter in Floquet open systems.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Chiral metals and entrapped insulators in a one-dimensional topological non-Hermitian system
    Banerjee, Ayan
    Hegde, Suraj S.
    Agarwala, Adhip
    Narayan, Awadhesh
    [J]. PHYSICAL REVIEW B, 2022, 105 (20)
  • [42] Chiral hinge transport in disordered non-Hermitian second-order topological insulators
    Wang, C.
    Wang, X. R.
    [J]. PHYSICAL REVIEW B, 2022, 106 (04)
  • [43] Multiple scattering theory of non-Hermitian sonic second-order topological insulators
    Rosendo Lopez, Maria
    Zhang, Zhiwang
    Torrent, Daniel
    Christensen, Johan
    [J]. COMMUNICATIONS PHYSICS, 2019, 2 (1)
  • [44] Floquet exceptional points and chirality in non-Hermitian Hamiltonians
    Longhi, Stefano
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (50)
  • [45] Non-Hermitian shortcut to adiabaticity in Floquet cavity electromagnonics
    Zhang, Feng-Yang
    Wu, Qi-Cheng
    Yang, Chui-Ping
    [J]. PHYSICAL REVIEW A, 2022, 106 (01)
  • [46] Dynamical localization in a non-Hermitian Floquet synthetic system
    可汗
    张嘉明
    霍良
    赵文垒
    [J]. Chinese Physics B, 2024, 33 (05) : 161 - 165
  • [47] Floquet π mode engineering in non-Hermitian waveguide lattices
    Wu, Shengjie
    Song, Wange
    Gao, Shenglun
    Chen, Yuxin
    Zhu, Shining
    Li, Tao
    [J]. PHYSICAL REVIEW RESEARCH, 2021, 3 (02):
  • [48] Non-Hermitian photonic spin Hall insulators
    Camara, Rodrigo P.
    Rappoport, Tatiana G.
    Silveirinha, Mario G.
    [J]. PHYSICAL REVIEW B, 2024, 109 (24)
  • [49] Non-Hermitian topological light steering
    Zhao, Han
    Qiao, Xingdu
    Wu, Tianwei
    Midya, Bikashkali
    Longhi, Stefano
    Feng, Liang
    [J]. SCIENCE, 2019, 365 (6458) : 1163 - +
  • [50] Controlling the direction of topological transport in a non-hermitian time-reversal symmetric floquet ladder
    Höckendorf, Bastian
    Alvermann, Andresa
    Fehske, Holger
    [J]. arXiv, 2020,