Lithiated hydrocarbons, their conjugate bases, and corresponding radicals:: A computational study of RLi (R = CH3, CH3CH2, CH2=CH, and HCC)

被引:8
|
作者
Pratt, LM [1 ]
Kass, SR
机构
[1] Fisk Univ, Dept Chem, Nashville, TN 37208 USA
[2] Univ Minnesota, Dept Chem, Minneapolis, MN 55455 USA
来源
JOURNAL OF ORGANIC CHEMISTRY | 2004年 / 69卷 / 06期
关键词
D O I
10.1021/jo035432h
中图分类号
O62 [有机化学];
学科分类号
070303 ; 081704 ;
摘要
Organolithium compounds RLi (R = CH3, CH3CH2, CH2=CH, and HCequivalent toC) and their corresponding hydrocarbons were fully optimized at the MP2/6-311+G(2df,2pd) level. Single-point energy calculations also were carried out at the CCSD(T) and B3LYP levels with the same triple split-valence basis set. Acidities, electron affinities, and bond dissociation energies are reported, and the following general results were found: (1) a-Lithio anions are ground-state triplet molecules. (2) Lithium is an acid-enhancing substituent. (3) Conjugate bases of organolithiums are stable with respect to electron loss and therefore are attractive targets for mass spectrometry investigations. (4) Lithium weakens alpha- and beta-C-H bonds, the latter by similar to-25 kcal mol(-1). Consequently, radical chemistry of lithiated compounds at remote sites is a promising area for exploration.
引用
收藏
页码:2123 / 2127
页数:5
相关论文
共 50 条
  • [31] The equilibrium (CH3)(3)CI reversible arrow (CH3)(2)C=CH2 + HI
    Jones, JL
    Ogg, RA
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1937, 59 : 1943 - 1945
  • [32] PHOTOIONIZATION OF CH3 - HEAT OF FORMATION OF CH2
    CHUPKA, WA
    LIFSHITZ, C
    JOURNAL OF CHEMICAL PHYSICS, 1968, 48 (03): : 1109 - &
  • [33] THE 3D STATES OF CH2 AND CH3
    STAMPER, JG
    SPECTROCHIMICA ACTA, 1962, 18 (10): : 1367 - 1367
  • [34] Breakdown curves of CH2(+), CH3(+), and CH4(+) molecules
    IdBarkach, T.
    Chabot, M.
    Beroff, K.
    Della Negras, S.
    Lesrel, J.
    Geslin, F.
    Le Padellec, A.
    Mahajan, T.
    Diaz-Tendero, S.
    ASTRONOMY & ASTROPHYSICS, 2019, 628
  • [35] Excess molar volumes of {x(1)CH(3)CO(CH2)(2)CH3+x(2)CH(3)(CH2)(3)CH2Cl+(1-x(1)-x(2))CH3(CH2)(v-2)CH3}, (v=10, 12) at the temperature of 298.15 K
    Menaut, CP
    Pico, JM
    Franjo, C
    Jimenez, E
    Legido, JL
    Andrade, MIP
    JOURNAL OF CHEMICAL THERMODYNAMICS, 1997, 29 (03): : 337 - 343
  • [36] Gas phase infrared spectroscopic observation of the organic acid dimers (CH3(CH2)6COOH)2, (CH3(CH2)7COOH)2, and (CH3(CH2)8COOH)2
    Eliason, TL
    Havey, DK
    Vaida, V
    CHEMICAL PHYSICS LETTERS, 2005, 402 (1-3) : 239 - 244
  • [37] Quantum topological studies on the isomerization and H2 elimination reaction of RN (R=CH3, CH3CH2)
    Li Xiao-Yan
    Sun Zheng
    Meng Ling-Peng
    Zheng Shi-Jun
    ACTA CHIMICA SINICA, 2007, 65 (20) : 2203 - 2210
  • [38] THE MECHANISM OF ALKENE ELIMINATION FROM THE OXONIUM IONS (CH3CH2)(2)C=OH+, CH3CH2CH2(CH3)C=OH+ AND (CH3CH2CH2)(2)C=OH+
    BOWEN, RD
    SUH, D
    TERLOUW, JK
    EUROPEAN MASS SPECTROMETRY, 1995, 1 (01): : 33 - 39
  • [39] Metastable decomposition of {ROH}H-n(+) cluster ions (where R=CH3 or CH3CH2)
    Xia, P
    Hall, M
    Furlani, TR
    Garvey, JF
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (30): : 12235 - 12240
  • [40] Synthesis of Zintl Triads Comprising Extended Conjugated π-Electronic Systems: [RGe9-CH=CH CH=CH Ge9R]4- (R = -CH=CH2, -C(CH3)=CH CH=N(CH2)2NH2)
    Frischhut, Sabine
    Bentlohner, Manuel M.
    Klein, Wilhelm
    Faessler, Thomas F.
    INORGANIC CHEMISTRY, 2017, 56 (17) : 10691 - 10698