Fast implementation for semidefinite programs with positive matrix completion

被引:3
|
作者
Yamashita, Makoto [1 ]
Nakata, Kazuhide [2 ]
机构
[1] Tokyo Inst Technol, Dept Math & Comp Sci, Meguro Ku, Tokyo 1528552, Japan
[2] Tokyo Inst Technol, Dept Ind Engn & Management, Meguro Ku, Tokyo 1528552, Japan
来源
OPTIMIZATION METHODS & SOFTWARE | 2015年 / 30卷 / 05期
关键词
semidefinite programs; interior-point methods; matrix completion; multithreaded computing; INTERIOR-POINT METHODS; ALGORITHMS;
D O I
10.1080/10556788.2015.1014554
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Solving semidefinite programs (SDPs) in a short time is the key to managing various mathematical optimization problems. The matrix-completion primal-dual interior-point method (MC-PDIPM) extracts a sparse structure of input SDP by factorizing the variable matrices. In this paper, we propose a new factorization based on the inverse of the variable matrix to enhance the performance of MC-PDIPM. We also use multithreaded parallel computing to deal with the major bottlenecks in MC-PDIPM. Numerical results show that the new factorization and multithreaded computing reduce the computation time for SDPs that have structural sparsity.
引用
收藏
页码:1030 / 1049
页数:20
相关论文
共 50 条
  • [21] Half thresholding eigenvalue algorithm for semidefinite matrix completion
    CHEN YongQiang
    LUO ZiYan
    XIU NaiHua
    [J]. Science China Mathematics, 2015, 58 (09) : 2015 - 2032
  • [22] Semidefinite programming for discrete optimization and matrix completion problems
    Wolkowicz, H
    Anjos, MF
    [J]. DISCRETE APPLIED MATHEMATICS, 2002, 123 (1-3) : 513 - 577
  • [23] TOEPLITZ AND POSITIVE SEMIDEFINITE COMPLETION PROBLEM FOR CYCLE GRAPH
    何明
    吴国宝
    [J]. Numerical Mathematics(Theory,Methods and Applications), 2005, (01) : 67 - 78
  • [24] Half thresholding eigenvalue algorithm for semidefinite matrix completion
    YongQiang Chen
    ZiYan Luo
    NaiHua Xiu
    [J]. Science China Mathematics, 2015, 58 : 2015 - 2032
  • [25] Half thresholding eigenvalue algorithm for semidefinite matrix completion
    Chen YongQiang
    Luo ZiYan
    Xiu NaiHua
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (09) : 2015 - 2032
  • [26] Positive semidefinite univariate matrix polynomials
    Hanselka, Christoph
    Sinn, Rainer
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2019, 292 (1-2) : 83 - 101
  • [27] Inequalities on Positive Semidefinite Hermitian Matrix
    LiGuangxing(Dept.Math.
    [J]. Journal of Mathematical Research with Applications, 1989, (03) : 372 - 374
  • [28] THE COMPLEXITY OF POSITIVE SEMIDEFINITE MATRIX FACTORIZATION
    Shitov, Yaroslav
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2017, 27 (03) : 1898 - 1909
  • [29] Positive semidefinite univariate matrix polynomials
    Christoph Hanselka
    Rainer Sinn
    [J]. Mathematische Zeitschrift, 2019, 292 : 83 - 101
  • [30] Fast ADMM for Semidefinite Programs with Chordal Sparsity
    Zheng, Yang
    Fantuzzi, Giovanni
    Papachristodoulou, Antonis
    Goulart, Paul
    Wynn, Andrew
    [J]. 2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 3335 - 3340