Using satellite imagery as ancillary data for increasing the precision of estimates for the Forest Inventory and Analysis program of the USDA Forest Service

被引:57
|
作者
McRoberts, RE [1 ]
Holden, GR [1 ]
Nelson, MD [1 ]
Liknes, GC [1 ]
Gormanson, DD [1 ]
机构
[1] USDA, Forest Serv, Forest Inventory & Anal, N Cent Res Stn, St Paul, MN 55108 USA
关键词
D O I
10.1139/X05-222
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Forest inventory programs report estimates of forest variables for areas of interest ranging in size from municipalities, to counties, to states or provinces. Because of numerous factors, sample sizes are often insufficient to estimate attributes as precisely as is desired, unless the estimation process is enhanced using ancillary data. Classified satellite imagery has been shown to be an effective source of ancillary data that, when used with stratified estimation techniques, contributes to increased precision with little corresponding increase in cost. Stratification investigations conducted by the Forest Inventory and Analysis program of the USDA Forest Service are reviewed, and a new approach to stratification using satellite imagery is proposed. The results indicate that precision may be substantially increased for estimates of both forest area and volume per unit area.
引用
收藏
页码:2968 / 2980
页数:13
相关论文
共 50 条
  • [41] Estimates of leaf-area index for the territory of Russia using State Forest Inventory data
    Grabovskii, V. I.
    Zukert, N. V.
    Korzukhin, M. D.
    [J]. CONTEMPORARY PROBLEMS OF ECOLOGY, 2016, 9 (07) : 814 - 819
  • [42] Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data
    Korhonen, Lauri
    Ali-Sisto, Daniela
    Tokola, Timo
    [J]. SILVA FENNICA, 2015, 49 (05)
  • [43] Evaluation of simulated estimates of forest ecosystem carbon stocks using ground plot data from Canada's National Forest Inventory
    Shaw, C. H.
    Hilger, A. B.
    Metsaranta, J.
    Kurz, W. A.
    Russo, G.
    Eichel, F.
    Stinson, G.
    Smyth, C.
    Filiatrault, M.
    [J]. ECOLOGICAL MODELLING, 2014, 272 : 323 - 347
  • [44] Rapid assessment of wind storm-caused forest damage using satellite images and stand-wise forest inventory data
    Jonikavicius, Donatas
    Mozgeris, Gintautas
    [J]. IFOREST-BIOGEOSCIENCES AND FORESTRY, 2013, 6 : 150 - 155
  • [45] Evapotranspiration estimates for two tropical mountain forest using high spatial resolution satellite data
    Nunez, Paulina Alava
    Silva, Brenner
    Schulz, Martin
    Rollenbeck, Ruetger
    Bendix, Joerg
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (08) : 2940 - 2962
  • [46] Estimates of selective logging impacts in tropical forest canopy cover using RapidEye imagery and field data
    Pinage, Ekena Rangel
    Trondoli Matricardi, Eraldo Aparecido
    Leal, Fabricio Assis
    Pedlowski, Marcos Antonio
    [J]. IFOREST-BIOGEOSCIENCES AND FORESTRY, 2016, 9 : 461 - 468
  • [47] Combining satellite imagery with forest inventory data to assess damage severity following a major blowdown event in northern Minnesota, USA
    Nelson, Mark D.
    Healey, Sean P.
    Moser, W. Keith
    Hansen, Mark H.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2009, 30 (19) : 5089 - 5108
  • [48] Combination of optical and LiDAR satellite imagery with forest inventory data to improve wall-to-wall assessment of growing stock in Italy
    Maselli, F.
    Chiesi, M.
    Mura, M.
    Marchetti, M.
    Corona, P.
    Chirici, G.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2014, 26 : 377 - 386
  • [49] Analysis of broadleaf encroachment in coniferous forest plantations using multi-temporal satellite imagery
    McInerney, Daniel
    Kempeneers, Pieter
    Marron, Magdalene
    McRoberts, Ronald E.
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 78 : 130 - 137
  • [50] Estimation of forest structural and compositional variables using ALS data and multi-seasonal satellite imagery
    Shang, Chen
    Treitz, Paul
    Caspersen, John
    Jones, Trevor
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 78 : 360 - 371